Effects of Selected Probiotics on Water Quality and Growth Performance of Nile Tilapia Cultured in a Recirculating Water System.
Main Article Content
Abstract
This study used selected probiotics (Bacillus subtilis HW3B and Lactiplantibacillus plantarum DW5L) in combination with a recirculating water system to evaluate the effects of the selected probiotics on Nile tilapia growth and water quality in the culture system. The experiment was conducted in aquaria (45 x 60 x 45 cm for each aquarium with 150 liters of water and a 40-liter internal filtration system). Both selected probiotic bacteria were tested in raising 15 fish, 2-3-inch in each Nile tilapia in aquaria with a recirculating water system for 10 weeks by consisting of 4 experimental sets with 5 replications each, consisting of T1 (control set – no microbial products added), T2 (microbial inoculum PM.1, a product of Department of Fisheries as positive control), T3 (mixed selected probiotic strains HW3B and DW5L at 1:1 by volume), and T4 (only B. subtilis HW3B). It was found that T3 significantly controlled BOD and TSS (P < 0.05) better than the control set. T2 was the most effective to control total ammonia, nitrite, nitrate, and total phosphorus, followed by T3, with significant differences. The number of detected bacteria fluctuated with the level of BOD in the water. A significant increase of total bacteria found in T 1 and T4 sets (P < 0.05), while Bacillus spp. found in all inoculated sets (P < 0.05). A remarkable increase of lactic acid bacteria (LAB) was observed only in T3 set (P < 0.05). It can be concluded that the use of T3 (the mixed probiotics HW3B and DW5L set) in combination with the recirculating water system can reduce the amount of waste in the water almost as effectively as the positive control (T2) and significantly better than the control set (T1). Moreover, T3 showed a better tilapia growth performance on final fish body weight and average daily length values compared with the T1 set (P < 0.05).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Fisheries Development Policy and Planning Division. Fisheries statistics of Thailand 2021; Department of Fisheries, Ministry of Agriculture and Cooperatives: Bangkok, 2022; 14 pp.
Abd El-Hack, M. E.; El-Saadony, M. T.; Nader, M. M.; Salem, H. M.; El-Tahan, A. M.; Soliman, S. M.; Khafaga, A. F. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). Int. J. Biometeorol. 2022, 66(11), 2183-2194. https://doi.org/10.1007/s00484-022-02347-6
Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic resistance in the finfish aquaculture industry: A review. Antibiotics 2022, 11(11), 1574. https://doi.org/10.3390/antibiotics11111574
Lindholm-Lehto, P. Water quality monitoring in recirculating aquaculture systems, Aqua. Fish & Fisheries 2023, 3(2), 113–131. https://doi.org/10.1002/aff2.102
El-Saadony, M. T.; Alagawany, M.; Patra, A. K.; Kar, I.; Tiwari, R.; Dawood, M. A. O.; Dhama, K.; Abdel-Latif, H. M. R. The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol. 2021, 117, 36-52. https://doi.org/10.1016/j.fsi.2021.07.007
Bregnballe, J. A Guide to Recirculation Aquaculture - An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; FAO and Eurofish International Organisation: Rome, 2022.
Thepnarong, K.; Jitpakdee, J.; Chiayvareesajja, S.; Kantachote,D.; Sangnoi, Y. Isolation and selection of probiotic bacteria from Nile tilapia (Oreochromis niloticus) as probiotics for promoting fish growth. ASEAN J. Sci. Tech. Report. 2024, 27(6), e255643. https://doi.org/10.55164/ajstr.v27i6.255643
Department of Fisheries. Using PM.1 in marine shrimp farming. Retrieved from http://www.fisheries.go.th/cs-pattani/images/2015/pr/bioKM.pdf (accessed March 1, 2019).
La-ongsiriwong, N.; La-ongsiriwong, L.; Mearah, P.; Silapajarn, K. “Culture of barramundi (Lates calcarlifer Bloch, 1790) size 4 to 6 inches in a recirculating system”. In Proceedings of the 49th Kasetsart University Annual Conference: Fisheries, Bangkok, 2011; pp 92-99. (in Thai)
Jantrarotai, W.; Sitasit, P.; Rajchapakdee, S. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias macrocephalus×C. gariepinus) diets containing raw broken rice. Aquaculture 1994, 127, 61-68. https://doi.org/10.1016/0044-8486(94)90192-9
Dupree, H. K.; Sneed, K. P. Response of channel catfish fingerlings to different levels of major nutrients in purified diets. U.S. Bureau of Sports Fisheries and Wildlife Technical Paper 9, 1966; 21 pp.
Nankervis, L.; Matthews, S. J.; Appleford, P. Effect of dietary non-protein energy source on growth, nutrient and circulating insulin-like growth factor I and triiodothyronine levels in juvenile barramundi (Lates calcarifer). Aquaculture 2000, 191(4), 323-335. https://doi.org/10.1016/S0044-8486(00)00436-1
APHA, AWWA, and WPCF. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, D.C., 1998.
Boyd, C. E. Water Quality: An Introduction, 2nd ed.; Springer International Publishing: Switzerland, 2015. https://link.springer.com/book/10.1007/978-3-030-23335-8 (accessed August 1, 2024).
Boyd, C. E. Use of agricultural limestone and lime in aquaculture. CABI Rev. 2017, 12(15), 1-10. https://doi.org/10.1079/PAVSNNR201712015
Said, M. M.; Zaki, F. M.; Ahmed, O. M. Effect of the probiotic (Bacillus spp.) on water quality, production performance, microbial profile, and food safety of the Nile tilapia and mint in recirculating aquaponic system. Egypt. J. Aquat. Biol. Fish. 2022, 26(6), 351-372. https://doi.org/10.21608/ejabf.2022.273109
Dash, G.; Raman, R. P.; Prasad, K. P.; Marappan, M.; Pradeep, M. A.; Sen, S. Evaluation of Lactobacillus plantarum as a water additive on host associated microflora, growth, feed efficiency and immune response of giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquac. Res. 2014, 47(3), 804-818. https://doi.org/10.1111/are.12539
Detsch, C.; Stülke, J. Ammonium utilization in Bacillus subtilis: Transport and regulatory functions of NrgA and NrgB. Microbiology 2003, 149, 3289-3297. https://doi.org/10.1099/mic.0.26512-0
Zokaeifar, H.; Babaei, N.; Saad, C. R.; Kamarudin, M. S.; Sijam, K.; Balcazar, J. L. Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2014, 36(1), 68-74. https://doi.org/10.1016/j.fsi.2013.10.007
Lalloo, R.; Ramchuran, S.; Ramduth, D.; Görgens, J.; Gardiner, N. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. J. Appl. Microbiol. 2007, 103(5), 1471-1479. https://doi.org/10.1111/j.1365-2672.2007.03360.x
Wang, Y. B.; Xu, Z. R.; Xia, M. S. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish. Sci. 2005, 71(5), 1036-1041. https://doi.org/10.1111/j.1444-2906.2005.01061.x
Zhang, Q.; Li, L.; Qin, R.; Meng, L.; Liu, D.; Tong, T.; Xu, L.; Liu, Y.; Kong, W. Effect of dietary Lactobacillus plantarum supplementation on the growth performance, intestinal health, antioxidant capacity, and mTOR signaling pathway of juvenile coho salmon (Oncorhynchus kisutch). Int. J. Mol. Sci. 2025, 26(3), 907. https://doi.org/10.3390/ijms26030907
Gewaily, M.S.; Shukry, M.; Abdel-Kader, M.F.; Alkafafy, M.; Farrag, F.A.; Moustafa, E.M.; Doan, H.V.; Abd-Elghany, M.F.; Abdelhamid, A.F.; Eltanahy, A.; Dawood, M.A.O. Dietary Lactobacillus plantarum relieves Nile tilapia (Oreochromis niloticus) juvenile from oxidative stress, immunosuppression and inflammation induced by deltamethrin and Aeromonas hydrophila, Front. Mar. Sci. 2021, 8, 621558. https://doi.org/10.3389/fmars.2021.621558
Olutiola, P. O.; Awojobi, K. O.; Oyedeji, O.; Ayansina, A. D. V.; Cole, O. O. Relationship between bacterial density and chemical composition of a tropical sewage oxidation pond. Afr. J. Environ. Sci. Technol. 2010, 4(9), 595-602.
Schneider, O.; Sereti, V.; Eding, E. H.; Verreth, J. A. J. Molasses as C source for heterotrophic bacteria production on solid fish waste. Aquaculture 2006, 261(4), 1239-1248. https://doi.org/10.1016/j.aquaculture.2006.08.053
Thungkao, S.; Roeancharoen, N. “The occurrence and identification of lactic acid bacteria in molasses-based ethanol production plants in Thailand”. In Proceedings of the Burapha University International Conference 2015, Bangsaen Heritage Hotel, Chonburi, Thailand, July 10-12, 2015, 742-749.
Fu, W.; Mathews, A. P. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 1999, 3(3), 163-170. https://doi.org/10.1016/S1369-703X(99)00014-5
Hamdan, A. M.; El-Sayed, A. F. M.; Mahmoud, M. M. Effects of a novel marine probiotic Lactobacillus plantarum AH 78 on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J. Appl. Microbiol. 2016, 120(4), 1061-1073. https://doi.org/10.1111/jam.13081
Irianto, A.; Austin, B. Use of probiotics to control furunculosis in Rainbow Trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2002, 25(6), 333-342. https://doi.org/10.1046/j.1365-2761.2002.00375.x
Merrifield, D. L.; Dimitroglou, A.; Foey, A.; Davies, S. J.; Baker, R. T. M.; Bogwald, J.; Castex, M.; Ringo, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302(1-2), 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007
Bisht, A.; Singh, U. P.; Pandey, N. N. Bacillus subtilis as a potent probiotic for enhancing growth in fingerlings of common carp (Cyprinus carpio L.). Indian J. Fish 2012, 59(3), 103-107.