Sustainable Construction with Cost-effective High-performance Building Materials: Utilizing Natural Activated Carbon Nanofillers Reinforced HDPE Nanocomposite
Main Article Content
Abstract
This study explores the development of HDPE nanocomposites reinforced with low-cost, naturally derived activated nanocarbon (ACN) fillers, providing an alternative to conventional carbon nanotube (CNT)-reinforced HDPE, which, despite its superior properties, remains expensive and complex to fabricate. ACN-HDPE nanocomposites were fabricated at varying filler loadings (2 wt.%, 5 wt.%, and 10 wt.%) and systematically compared with CNT-HDPE counterparts (1 wt.% and 2 wt.%) across multiple performance metrics. These included mechanical strength (tensile strength, impact strength, flexural stress, compressive strength, and elongation at break), thermal stability (heat deflection temperature, vicat softening point, and oxidative induction time), flammability (vertical burn tests), and weather resistance (UV/moisture aging and gas permeability). The results demonstrate that 10 wt.% ACN-HDPE composites achieved a 161% increase in impact strength and substantial improvements in other mechanical parameters. Thermal properties were markedly enhanced, with a 51% increase in heat deflection temperature, a 39% rise in Vicat softening point, and a remarkable 426% extension in oxidative induction time. Flammability resistance improved by 93%, while UV/moisture degradation and gas permeability were reduced by 12% and 60%, respectively. These composites performed comparably to 2 wt.% CNT-HDPE in all evaluated aspects, emphasizing their viability for high-performance applications. With enhanced mechanical, thermal, and flame-retardant properties, ACN-HDPE nanocomposites offer a cost-effective, eco-friendly alternative to CNT-HDPE and pristine HDPE. These materials present a transformative solution for sustainable construction, delivering high performance while significantly reducing costs and environmental impact.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Casini, M. Advanced Building Construction Methods. Constr. 4.0, 2022, 405–470. https://doi.org/10.1016/B978-0-12-821797-9.00006-4
Agarwal, S.; Gupta, R. K. Plastics in Buildings and Construction. Appl. Plast. Eng. Handb., 2017, 635–649. https://doi.org/10.1016/B978-0-323-39040-8.00030-4
Rajaeifar, M. A.; Abdi, R.; Tabatabaei, M. Expanded Polystyrene Waste Application for Improving Biodiesel Environmental Performance Parameters from Life Cycle Assessment Point of View. Renew. Sustain. Energy Rev., 2017, 74, 278–298. https://doi.org/10.1016/j.rser.2017.02.032
Almohana, A. I.; Abdulwahid, M. Y.; Galobardes, I.; Mushtaq, J.; Almojil, S. F. Producing Sustainable Concrete with Plastic Waste: A Review. Environ. Challenges, 2022, 9, 100626–100632. https://doi.org/10.1016/j.envc.2022.100626
Gedik, A. A Review on the Evaluation of the Potential Utilization of Construction and Demolition Waste in Hot Mix Asphalt Pavements. Resour. Conserv. Recycl., 2020, 161, 104956–104967. https://doi.org/10.1016/j.resconrec.2020.104956
Majid, F.; Safe, M.; Elghorba, M. Burst Behavior of CPVC Compared to HDPE Thermoplastic Polymer under a Controlled Internal Pressure. Procedia Struct. Integr., 2017, 3, 380–386. https://doi.org/10.1016/j.prostr.2017.04.041
Feldman, D. Polymer Nanocomposites in Building, Construction. J. Macromol. Sci. Part A, 2014, 51(3), 203–209. https://doi.org/10.1080/10601325.2014.871948
Correia Diogo, A. Polymers in Building and Construction. In Materials for Construction and Civil Engineering; Springer International Publishing: Cham, 2015, 447–499. https://doi.org/10.1007/978-3-319-08236-310
Grace, R. Plastics Thriving in Building & Construction. Plast. Eng., 2017, 73(3), 12–20. https://doi.org/10.1002/j.1941-9635.2017.tb01671.x
Choudhury, M.; Singh Bindra, H.; Mittal, J.; Nayak, R. Evaluation of Mechanical Properties of Carbon HDPE Composites. Mater. Today Proc., 2021, 47, 6712–6718. https://doi.org/10.1016/j.matpr.2021.05.119
Vidakis, N.; Petousis, M.; Michailidis, N.; Mountakis, N.; Argyros, A.; Spiridaki, M.; Moutsopoulou, A.; Papadakis, V.; Charitidis, C. High-Density Polyethylene/Carbon Black Composites in Material Extrusion Additive Manufacturing: Conductivity, Thermal, Rheological, and Mechanical Responses. Polymers (Basel)., 2023, 15(24), 4717–4737. https://doi.org/10.3390/polym15244717
Zhang, Q.; Zhang, D.; Xu, H.; Lu, W.; Ren, X.; Cai, H.; Lei, H.; Huo, E.; Zhao, Y.; Qian, M.; et al. Biochar Filled High-Density Polyethylene Composites with Excellent Properties: Towards Maximizing the Utilization of Agricultural Wastes. Ind. Crops Prod., 2020, 146, 112185–112194. https://doi.org/10.1016/j.indcrop.2020.112185
Wang, R.; Meng, T.; Zhang, B.; Chen, C.; Li, D. Preparation and Characterization of Activated Carbon/Ultra‐high Molecular Weight Polyethylene Composites. Polym. Compos., 2021, 42(6), 2728–2736. https://doi.org/10.1002/pc.26008
Alghamdi, M. N. Performance for Fly Ash Reinforced HDPE Composites over the Ageing of Material Components. Polymers (Basel)., 2022, 14(14), 2913–2924. https://doi.org/10.3390/polym14142913
Svensson, S.; Åkesson, D.; Bohlén, M. Reprocessing of High-Density Polyethylene Reinforced with Carbon Nanotubes. J. Polym. Environ., 2020, 28(7), 1967–1973. https://doi.org/10.1007/s10924-020-01739-2
Makableh, Y.; Bozeya, A.; Rawashdeh, T.; Alnasra, I.; Hammam, H. A. Investigation of the Mechanical and Thermal Stability of Ultra-High Molecular Weight Polyethylene by Using Amide-Multi-Walled Carbon Nanotubes as a Reinforcement Material. Adv. Nat. Sci. Nanosci. Nanotechnol., 2022, 13 (1), 015011. https://doi.org/10.1088/2043-6262/ac5d59
Sahu, S. K.; Badgayan, N. D.; Samanta, S.; Rama Sreekanth, P. S. Experimental Investigation on Multidimensional Carbon Nanofiller Reinforcement in HDPE: An Evaluation of Mechanical Performance. Mater. Today Proc., 2020, 24, 415–421. https://doi.org/10.1016/j.matpr.2020.04.293
Rao, B. D.; Pradhan, A.; Sethi, K. K. Study of Wear Performance and Mechanical Properties of HDPE on Addition of CNT Fillers. Mater. Today Proc., 2022, 62, 7501–7508. https://doi.org/10.1016/j.matpr.2022.03.705
Kumar, S.; Ramesh, M. R.; Doddamani, M.; Rangappa, S. M.; Siengchin, S. Mechanical Characterization of 3D Printed MWCNTs/HDPE Nanocomposites. Polym. Test., 2022, 114, 107703–107714. https://doi.org/10.1016/j.polymertesting.2022.107703
Åkesson, D.; Ramamoorthy, S. K. L.; Bohlén, M.; Skrifvars, V.; Svensson, S.; Skrifvars, M. Thermo‐oxidative Aging of High‐density Polyethylene Reinforced with Multiwalled Carbon Nanotubes. J. Appl. Polym. Sci., 2021, 138 (26), 1–8. https://doi.org/10.1002/app.50609
Jaiswal, M.; Majumdar, N.; Kumar, R.; Mittal, J.; Jha, P. Graphene Based Nano Gas Sensors: Mechanistic Study. Adv. Nat. Sci. Nanosci. Nanotechnol., 2022, 13(4), 043002. https://doi.org/10.1088/2043-6262/aca022
Dabees, S.; Elshalakany, A. B.; Tirth, V.; Kamel, B. M. Synthesis and Characterization Studies of High-Density Polyethylene -Based Nanocomposites with Enhanced Surface Energy, Tribological, and Electrical Properties. Polym. Test., 2021, 98, 107193–107205. https://doi.org/10.1016/j.polymertesting.2021.107193
A., N.; Taha, M.; Ibrahim, A. M. M.; A. K., A. Role of Hybrid Nanofiller GNPs/Al2O3 on Enhancing the Mechanical and Tribological Performance of HDPE Composite. Sci. Rep., 2023, 13(1), 12447–12460. https://doi.org/10.1038/s41598-023-39172-9
Okolo, C.; Rafique, R.; Iqbal, S. S.; Saharudin, M. S.; Inam, F. Carbon Nanotube Reinforced High Density Polyethylene Materials for Offshore Sheathing Applications. Molecules, 2020, 25(13), 2960–2973. https://doi.org/10.3390/molecules25132960
Sayam, A.; Rahman, A. N. M. M.; Rahman, M. S.; Smriti, S. A.; Ahmed, F.; Rabbi, M. F.; Hossain, M.; Faruque, M. O. A Review on Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges. Carbon Lett., 2022, 32(5), 1173–1205. https://doi.org/10.1007/s42823-022-00358-2
Carroccio, S. C.; Scarfato, P.; Bruno, E.; Aprea, P.; Dintcheva, N. T.; Filippone, G. Impact of Nanoparticles on the Environmental Sustainability of Polymer Nanocomposites Based on Bioplastics or Recycled Plastics – A Review of Life-Cycle Assessment Studies. J. Clean. Prod., 2022, 335, 130322–130334. https://doi.org/10.1016/j.jclepro.2021.130322
Lim, J.-V.; Bee, S.-T.; Tin Sin, L.; Ratnam, C. T.; Abdul Hamid, Z. A. A Review on the Synthesis, Properties, and Utilities of Functionalized Carbon Nanoparticles for Polymer Nanocomposites. Polymers (Basel)., 2021, 13(20), 3547–3592. https://doi.org/10.3390/polym13203547
Nisar, M.; Thue, P. S.; Maghous, M. B.; Geshev, J.; Lima, E. C.; Einloft, S. Metal Activated Carbon as an Efficient Filler for High‐density Polyethylene Nanocomposites. Polym. Compos., 2020, 41(8), 3184–3193. https://doi.org/10.1002/pc.25610
Vidakis, N.; Petousis, M.; Kalderis, D.; Michailidis, N.; Maravelakis, E.; Saltas, V.; Bolanakis, N.; Papadakis, V.; Spiridaki, M.; Argyros, A. Reinforced HDPE with Optimized Biochar Content for Material Extrusion Additive Manufacturing: Morphological, Rheological, Electrical, and Thermomechanical Insights. Biochar, 2024, 6(1), 37–58. https://doi.org/10.1007/s42773-024-00314-5
Gill, Y. Q.; Jin, J.; Song, M. Comparative Study of Carbon-Based Nanofillers for Improving the Properties of HDPE for Potential Applications in Food Tray Packaging. Polym. Polym. Compos., 2020, 28(8–9), 562–571. https://doi.org/10.1177/0967391119892091
Rahmanian, V.; Galeski, A.; Rozanski, A. Polyethylene Nanocomposites with Carbon Nanofillers: Similarities and Differences and New Insight on Cavitation in Tensile Drawing. Macromolecules, 2024, 57 (3), 1337–1353. https://doi.org/10.1021/acs.macromol.3c01755
Alshammari, B. A.; Alenad, A. M.; Al-Mubaddel, F. S.; Alharbi, A. G.; Al-shehri, A. S.; Albalwi, H. A.; Alsuabie, F. M.; Fouad, H.; Mourad, A.-H. I. Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites. Polymers (Basel)., 2022, 14(16), 3427–3442. https://doi.org/10.3390/polym14163427
Salah, N.; Alfawzan, A. M.; Saeed, A.; Alshahrie, A.; Allafi, W. Effective Reinforcements for Thermoplastics Based on Carbon Nanotubes of Oil Fly Ash. Sci. Rep., 2019, 9(1), 20288–202301. https://doi.org/10.1038/s41598-019-56777-1
Yang, D. J.; Zhang, Q.; Chen, G.; Yoon, S. F.; Ahn, J.; Wang, S. G.; Zhou, Q.; Wang, Q.; Li, J. Q. Thermal Conductivity of Multiwalled Carbon Nanotubes. Phys. Rev. B, 2002, 66(16), 165440–165446. https://doi.org/10.1103/PhysRevB.66.165440
Sikora, J. W.; Gajdoš, I.; Puszka, A. Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers (Basel)., 2019, 11(5), 787–798. https://doi.org/10.3390/polym11050787
Vatani Oskouei, A.; Afzali, M.; Madadipour, M. Experimental Investigation on Mud Bricks Reinforced with Natural Additives under Compressive and Tensile Tests. Constr. Build. Mater., 2017, 142, 137–147. https://doi.org/10.1016/j.conbuildmat.2017.03.065
Yang, Y.; Díaz Palencia, J. L.; Wang, N.; Jiang, Y.; Wang, D.-Y. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules, 2021, 26(15), 4670–4702. https://doi.org/10.3390/molecules26154670
Willard, J. J.; Wondra, R. E. Quantitative Evaluation of Flame-Retardant Cotton Finishes by the Limiting-Oxygen Index (LOI) Technique. Text. Res. J., 1970, 40(3), 203–210. https://doi.org/10.1177/004051757004000301
Al Sheheri, S. Z.; Al-Amshany, Z. M.; Al Sulami, Q. A.; Tashkandi, N. Y.; Hussein, M. A.; El-Shishtawy, R. M. The Preparation of Carbon Nanofillers and Their Role on the Performance of Variable Polymer Nanocomposites. Des. Monomers Polym., 2019, 22(1), 8–53. https://doi.org/10.1080/15685551.2019.1565664
Shaikh, A. M.; Kubade, P. R. Effect of Nanofillers on Rolled Polymer Nanocomposites: A Review. Mater. Today Proc., 2023, In press. https://doi.org/10.1016/j.matpr.2023.07.346
Zotti, A.; Zuppolini, S.; Borriello, A.; Vinti, V.; Trinchillo, L.; Zarrelli, M. The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs. Polymers (Basel)., 2024, 16(5), 638–652. https://doi.org/10.3390/polym16050638
Robeson, L. M. Environmental Stress Cracking: A Review. Polym. Eng. Sci., 2013, 53(3), 453–467. https://doi.org/10.1002/pen.23284