Sustainable Construction with Cost-effective High-performance Building Materials: Utilizing Natural Activated Carbon Nanofillers Reinforced HDPE Nanocomposite

Main Article Content

Mousam Choudhury
Jagjiwan Mittal
Somnath Chanda Roy
Ranu Nayak

Abstract

This study explores the development of HDPE nanocomposites reinforced with low-cost, naturally derived activated nanocarbon (ACN) fillers, providing an alternative to conventional carbon nanotube (CNT)-reinforced HDPE, which, despite its superior properties, remains expensive and complex to fabricate. ACN-HDPE nanocomposites were fabricated at varying filler loadings (2 wt.%, 5 wt.%, and 10 wt.%) and systematically compared with CNT-HDPE counterparts (1 wt.% and 2 wt.%) across multiple performance metrics. These included mechanical strength (tensile strength, impact strength, flexural stress, compressive strength, and elongation at break), thermal stability (heat deflection temperature, vicat softening point, and oxidative induction time), flammability (vertical burn tests), and weather resistance (UV/moisture aging and gas permeability). The results demonstrate that 10 wt.% ACN-HDPE composites achieved a 161% increase in impact strength and substantial improvements in other mechanical parameters. Thermal properties were markedly enhanced, with a 51% increase in heat deflection temperature, a 39% rise in Vicat softening point, and a remarkable 426% extension in oxidative induction time. Flammability resistance improved by 93%, while UV/moisture degradation and gas permeability were reduced by 12% and 60%, respectively. These composites performed comparably to 2 wt.% CNT-HDPE in all evaluated aspects, emphasizing their viability for high-performance applications. With enhanced mechanical, thermal, and flame-retardant properties, ACN-HDPE nanocomposites offer a cost-effective, eco-friendly alternative to CNT-HDPE and pristine HDPE. These materials present a transformative solution for sustainable construction, delivering high performance while significantly reducing costs and environmental impact.

Article Details

Section
Research Articles

References

Casini, M. Advanced Building Construction Methods. Constr. 4.0, 2022, 405–470. https://doi.org/10.1016/B978-0-12-821797-9.00006-4

Agarwal, S.; Gupta, R. K. Plastics in Buildings and Construction. Appl. Plast. Eng. Handb., 2017, 635–649. https://doi.org/10.1016/B978-0-323-39040-8.00030-4

Rajaeifar, M. A.; Abdi, R.; Tabatabaei, M. Expanded Polystyrene Waste Application for Improving Biodiesel Environmental Performance Parameters from Life Cycle Assessment Point of View. Renew. Sustain. Energy Rev., 2017, 74, 278–298. https://doi.org/10.1016/j.rser.2017.02.032

Almohana, A. I.; Abdulwahid, M. Y.; Galobardes, I.; Mushtaq, J.; Almojil, S. F. Producing Sustainable Concrete with Plastic Waste: A Review. Environ. Challenges, 2022, 9, 100626–100632. https://doi.org/10.1016/j.envc.2022.100626

Gedik, A. A Review on the Evaluation of the Potential Utilization of Construction and Demolition Waste in Hot Mix Asphalt Pavements. Resour. Conserv. Recycl., 2020, 161, 104956–104967. https://doi.org/10.1016/j.resconrec.2020.104956

Majid, F.; Safe, M.; Elghorba, M. Burst Behavior of CPVC Compared to HDPE Thermoplastic Polymer under a Controlled Internal Pressure. Procedia Struct. Integr., 2017, 3, 380–386. https://doi.org/10.1016/j.prostr.2017.04.041

Feldman, D. Polymer Nanocomposites in Building, Construction. J. Macromol. Sci. Part A, 2014, 51(3), 203–209. https://doi.org/10.1080/10601325.2014.871948

Correia Diogo, A. Polymers in Building and Construction. In Materials for Construction and Civil Engineering; Springer International Publishing: Cham, 2015, 447–499. https://doi.org/10.1007/978-3-319-08236-310

Grace, R. Plastics Thriving in Building & Construction. Plast. Eng., 2017, 73(3), 12–20. https://doi.org/10.1002/j.1941-9635.2017.tb01671.x

Choudhury, M.; Singh Bindra, H.; Mittal, J.; Nayak, R. Evaluation of Mechanical Properties of Carbon HDPE Composites. Mater. Today Proc., 2021, 47, 6712–6718. https://doi.org/10.1016/j.matpr.2021.05.119

Vidakis, N.; Petousis, M.; Michailidis, N.; Mountakis, N.; Argyros, A.; Spiridaki, M.; Moutsopoulou, A.; Papadakis, V.; Charitidis, C. High-Density Polyethylene/Carbon Black Composites in Material Extrusion Additive Manufacturing: Conductivity, Thermal, Rheological, and Mechanical Responses. Polymers (Basel)., 2023, 15(24), 4717–4737. https://doi.org/10.3390/polym15244717

Zhang, Q.; Zhang, D.; Xu, H.; Lu, W.; Ren, X.; Cai, H.; Lei, H.; Huo, E.; Zhao, Y.; Qian, M.; et al. Biochar Filled High-Density Polyethylene Composites with Excellent Properties: Towards Maximizing the Utilization of Agricultural Wastes. Ind. Crops Prod., 2020, 146, 112185–112194. https://doi.org/10.1016/j.indcrop.2020.112185

Wang, R.; Meng, T.; Zhang, B.; Chen, C.; Li, D. Preparation and Characterization of Activated Carbon/Ultra‐high Molecular Weight Polyethylene Composites. Polym. Compos., 2021, 42(6), 2728–2736. https://doi.org/10.1002/pc.26008

Alghamdi, M. N. Performance for Fly Ash Reinforced HDPE Composites over the Ageing of Material Components. Polymers (Basel)., 2022, 14(14), 2913–2924. https://doi.org/10.3390/polym14142913

Svensson, S.; Åkesson, D.; Bohlén, M. Reprocessing of High-Density Polyethylene Reinforced with Carbon Nanotubes. J. Polym. Environ., 2020, 28(7), 1967–1973. https://doi.org/10.1007/s10924-020-01739-2

Makableh, Y.; Bozeya, A.; Rawashdeh, T.; Alnasra, I.; Hammam, H. A. Investigation of the Mechanical and Thermal Stability of Ultra-High Molecular Weight Polyethylene by Using Amide-Multi-Walled Carbon Nanotubes as a Reinforcement Material. Adv. Nat. Sci. Nanosci. Nanotechnol., 2022, 13 (1), 015011. https://doi.org/10.1088/2043-6262/ac5d59

Sahu, S. K.; Badgayan, N. D.; Samanta, S.; Rama Sreekanth, P. S. Experimental Investigation on Multidimensional Carbon Nanofiller Reinforcement in HDPE: An Evaluation of Mechanical Performance. Mater. Today Proc., 2020, 24, 415–421. https://doi.org/10.1016/j.matpr.2020.04.293

Rao, B. D.; Pradhan, A.; Sethi, K. K. Study of Wear Performance and Mechanical Properties of HDPE on Addition of CNT Fillers. Mater. Today Proc., 2022, 62, 7501–7508. https://doi.org/10.1016/j.matpr.2022.03.705

Kumar, S.; Ramesh, M. R.; Doddamani, M.; Rangappa, S. M.; Siengchin, S. Mechanical Characterization of 3D Printed MWCNTs/HDPE Nanocomposites. Polym. Test., 2022, 114, 107703–107714. https://doi.org/10.1016/j.polymertesting.2022.107703

Åkesson, D.; Ramamoorthy, S. K. L.; Bohlén, M.; Skrifvars, V.; Svensson, S.; Skrifvars, M. Thermo‐oxidative Aging of High‐density Polyethylene Reinforced with Multiwalled Carbon Nanotubes. J. Appl. Polym. Sci., 2021, 138 (26), 1–8. https://doi.org/10.1002/app.50609

Jaiswal, M.; Majumdar, N.; Kumar, R.; Mittal, J.; Jha, P. Graphene Based Nano Gas Sensors: Mechanistic Study. Adv. Nat. Sci. Nanosci. Nanotechnol., 2022, 13(4), 043002. https://doi.org/10.1088/2043-6262/aca022

Dabees, S.; Elshalakany, A. B.; Tirth, V.; Kamel, B. M. Synthesis and Characterization Studies of High-Density Polyethylene -Based Nanocomposites with Enhanced Surface Energy, Tribological, and Electrical Properties. Polym. Test., 2021, 98, 107193–107205. https://doi.org/10.1016/j.polymertesting.2021.107193

A., N.; Taha, M.; Ibrahim, A. M. M.; A. K., A. Role of Hybrid Nanofiller GNPs/Al2O3 on Enhancing the Mechanical and Tribological Performance of HDPE Composite. Sci. Rep., 2023, 13(1), 12447–12460. https://doi.org/10.1038/s41598-023-39172-9

Okolo, C.; Rafique, R.; Iqbal, S. S.; Saharudin, M. S.; Inam, F. Carbon Nanotube Reinforced High Density Polyethylene Materials for Offshore Sheathing Applications. Molecules, 2020, 25(13), 2960–2973. https://doi.org/10.3390/molecules25132960

Sayam, A.; Rahman, A. N. M. M.; Rahman, M. S.; Smriti, S. A.; Ahmed, F.; Rabbi, M. F.; Hossain, M.; Faruque, M. O. A Review on Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges. Carbon Lett., 2022, 32(5), 1173–1205. https://doi.org/10.1007/s42823-022-00358-2

Carroccio, S. C.; Scarfato, P.; Bruno, E.; Aprea, P.; Dintcheva, N. T.; Filippone, G. Impact of Nanoparticles on the Environmental Sustainability of Polymer Nanocomposites Based on Bioplastics or Recycled Plastics – A Review of Life-Cycle Assessment Studies. J. Clean. Prod., 2022, 335, 130322–130334. https://doi.org/10.1016/j.jclepro.2021.130322

Lim, J.-V.; Bee, S.-T.; Tin Sin, L.; Ratnam, C. T.; Abdul Hamid, Z. A. A Review on the Synthesis, Properties, and Utilities of Functionalized Carbon Nanoparticles for Polymer Nanocomposites. Polymers (Basel)., 2021, 13(20), 3547–3592. https://doi.org/10.3390/polym13203547

Nisar, M.; Thue, P. S.; Maghous, M. B.; Geshev, J.; Lima, E. C.; Einloft, S. Metal Activated Carbon as an Efficient Filler for High‐density Polyethylene Nanocomposites. Polym. Compos., 2020, 41(8), 3184–3193. https://doi.org/10.1002/pc.25610

Vidakis, N.; Petousis, M.; Kalderis, D.; Michailidis, N.; Maravelakis, E.; Saltas, V.; Bolanakis, N.; Papadakis, V.; Spiridaki, M.; Argyros, A. Reinforced HDPE with Optimized Biochar Content for Material Extrusion Additive Manufacturing: Morphological, Rheological, Electrical, and Thermomechanical Insights. Biochar, 2024, 6(1), 37–58. https://doi.org/10.1007/s42773-024-00314-5

Gill, Y. Q.; Jin, J.; Song, M. Comparative Study of Carbon-Based Nanofillers for Improving the Properties of HDPE for Potential Applications in Food Tray Packaging. Polym. Polym. Compos., 2020, 28(8–9), 562–571. https://doi.org/10.1177/0967391119892091

Rahmanian, V.; Galeski, A.; Rozanski, A. Polyethylene Nanocomposites with Carbon Nanofillers: Similarities and Differences and New Insight on Cavitation in Tensile Drawing. Macromolecules, 2024, 57 (3), 1337–1353. https://doi.org/10.1021/acs.macromol.3c01755

Alshammari, B. A.; Alenad, A. M.; Al-Mubaddel, F. S.; Alharbi, A. G.; Al-shehri, A. S.; Albalwi, H. A.; Alsuabie, F. M.; Fouad, H.; Mourad, A.-H. I. Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites. Polymers (Basel)., 2022, 14(16), 3427–3442. https://doi.org/10.3390/polym14163427

Salah, N.; Alfawzan, A. M.; Saeed, A.; Alshahrie, A.; Allafi, W. Effective Reinforcements for Thermoplastics Based on Carbon Nanotubes of Oil Fly Ash. Sci. Rep., 2019, 9(1), 20288–202301. https://doi.org/10.1038/s41598-019-56777-1

Yang, D. J.; Zhang, Q.; Chen, G.; Yoon, S. F.; Ahn, J.; Wang, S. G.; Zhou, Q.; Wang, Q.; Li, J. Q. Thermal Conductivity of Multiwalled Carbon Nanotubes. Phys. Rev. B, 2002, 66(16), 165440–165446. https://doi.org/10.1103/PhysRevB.66.165440

Sikora, J. W.; Gajdoš, I.; Puszka, A. Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers (Basel)., 2019, 11(5), 787–798. https://doi.org/10.3390/polym11050787

Vatani Oskouei, A.; Afzali, M.; Madadipour, M. Experimental Investigation on Mud Bricks Reinforced with Natural Additives under Compressive and Tensile Tests. Constr. Build. Mater., 2017, 142, 137–147. https://doi.org/10.1016/j.conbuildmat.2017.03.065

Yang, Y.; Díaz Palencia, J. L.; Wang, N.; Jiang, Y.; Wang, D.-Y. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules, 2021, 26(15), 4670–4702. https://doi.org/10.3390/molecules26154670

Willard, J. J.; Wondra, R. E. Quantitative Evaluation of Flame-Retardant Cotton Finishes by the Limiting-Oxygen Index (LOI) Technique. Text. Res. J., 1970, 40(3), 203–210. https://doi.org/10.1177/004051757004000301

Al Sheheri, S. Z.; Al-Amshany, Z. M.; Al Sulami, Q. A.; Tashkandi, N. Y.; Hussein, M. A.; El-Shishtawy, R. M. The Preparation of Carbon Nanofillers and Their Role on the Performance of Variable Polymer Nanocomposites. Des. Monomers Polym., 2019, 22(1), 8–53. https://doi.org/10.1080/15685551.2019.1565664

Shaikh, A. M.; Kubade, P. R. Effect of Nanofillers on Rolled Polymer Nanocomposites: A Review. Mater. Today Proc., 2023, In press. https://doi.org/10.1016/j.matpr.2023.07.346

Zotti, A.; Zuppolini, S.; Borriello, A.; Vinti, V.; Trinchillo, L.; Zarrelli, M. The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs. Polymers (Basel)., 2024, 16(5), 638–652. https://doi.org/10.3390/polym16050638

Robeson, L. M. Environmental Stress Cracking: A Review. Polym. Eng. Sci., 2013, 53(3), 453–467. https://doi.org/10.1002/pen.23284