Characterization of Red Palm Oil from Elaeis guineensis Produced by Multi-step Fractionation and Assessment of Anti-inflammatory Activity

Main Article Content

Jeerapong Rakprasoot
Utoomporn Surayot
Patcharin Raviyan

Abstract

An economical processing method for red palm oil production was developed for small and medium-sized businesses (SMEs). Crude palm oil was obtained from oil palm fruits (Elaeis guineensis). The optimal degumming conditions were determined. A multi-step fractionation at 34, 25, and 15 °C with the cooling rates of 60 °C /hr and 10 °C /hr were compared. The optimal degumming conditions were 20 min at a temperature of 90 °C, phosphoric acid to citric acid of 0.06:0.04%, and a cooling rate of 10 °C /hr. The red palm oil contained 43.54% oleic acid, 747.22 mg/kg carotenoids, 856.91 mg/kg vitamin E, and 55.70% yield at optimal conditions. The anti-inflammatory activity in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) showed that the oil could reduce the production of nitric oxide and prostaglandin E2 (PGE2) in LPS-stimulated RAW264.7 cells. The oil attenuated LPS-induced mRNA expression of inflammatory mediators and cytokines by inhibiting the NF-κB and MAPK signaling pathways in LPS-stimulated macrophages. The results suggest that the developed process could effectively produce red palm oil with promising anti-inflammatory properties.

Article Details

Section
Research Articles

References

Sumarna, D.; Sumarlan, S.H.; Wijaya, S.; Hidayat, N. Processing of olein fraction red palm oil with minimal refining method and optimization of deodorization process. Advances in Biological Sciences Research 2021, 17, 167-175. https://doi.org/10.2991/absr.k.220102.026

Nagendran, B.U; nnithan, U.R.; Choo, Y.M.; Kalyana, S. Characteristics of red palm oil, a carotene-and vitamin E-rich refined oil for food uses. Food and Nutrition Bulletin 2000, 21(2), 189–194. https://doi.org/10.1177/156482650002100213

Lee, W.J.; Tan, C.P.; Sulaiman, R.; Chong, G.H. Solubility of red palm oil in supercritical carbon dioxide: Measurement and modelling. Chinese Journal of Chemical Engineering 2018, 26(5), 964–969. https://doi.org/10.1016/j.cjche.2017.09.024

Azmi, R.A.; Goh, P.S.; Ismail, A.F.; Lau, W.J.; Ng, B.C.; Othman, N.M.; Noor, A.M.; Yusoff, M.S.A. Deacidification of crude palm oil using PVA-crosslinked PVDF membrane. Journal of Food Engineering 2015, 166, 165-173. https://doi.org/10.1016/j.jfoodeng.2015.06.001

Chooklin, S.; Kaewsichan, L.; Kaewsrichan, J. Potential Utilization of Sap from Oil Palm (Elaeis guineensis) for Lactic Acid Production by Lactobacillus casei. Journal of Sustainable Energy & Environment 2011, 2, 99-104.

Silalertruksa, T.; Gheewala, S.H.; Pongpat, P.; Kaenchan, P.; Permpool, N.; Lecksiwilai, N.; Mungkung, R. Environmental sustainability of oil palm cultivation in different regions of Thailand: Greenhouse gases and water use impact. Journal of Cleaner Production 2017, 167, 1009-1019. https://doi.org/10.1016/j.jclepro.2016.11.069

Chompoo, M.; Damrongwattanakool, D.; Raviyan, P. Properties of healthy oil formulated from red palm, rice bran and sesame oils. Songklanakarin journal of science and technology 2019, 41(2), 450-458. https://doi.org/10.14456/sjst-psu.2019.56

O’ Brien, R.D. Fat and oil. Formulating and processing for applications. 3rd ed.; CRC Press, New York, USA, 2009, pp 1-680.

Codex Alimentarius International Food Standards. Standard for named vegetable oils: CODEX STAN 210-1999. Geneva, Switzerland, 1999.

Shi-Cheng, T.; Teck-Kim, T.; Yee-Ying, L. A review on the fundamentals of palm oil fractionation: Processing conditions and seeding agents. European Journal of Lipid Science and Technology 2021, 123(12), Article 2100132. https://doi.org/10.1002/ejlt.202100132

Tan, C.H.; Lee, C.J.; Tan, S.N.; Poon, D.T.S.; Chong, C.Y.E.; Pui, L.P. Red palm oil: A review on processing, health benefits and its application in food. Journal of Oleo Science 2021, 70(9) 1201-1210. https://doi.org/10.5650/jos.ess21108

Loganathan, R.; Subramaniam, K.M.; Radhakrishnan, A.K.; Choo, Y.M.; Teng, K.T. Health-promoting effects of red palm oil: Evidence from animal and human studies. Nutrition Reviews 2017, 75(2), 98-113. https://doi.org/10.1093/nutrit/nuw054

Khatoon, S.; Reddy, S.R.Y. Plastic fats with zero-trans fatty acids by interesterification of mango, mahua and palm oils. European Journal of Lipid Science and Technology 2005, 107(11), 786-791. https://doi.org/10.1002/ejlt.200501210

Arain, M.A.; Mei, Z.; Hassan, F.U.; Saeed, M.; Alagawany, M.; Shar, A.H.; Rajput, I.R. Lycopene: A natural antioxidant for prevention of heat-induced oxidative stress in poultry. World's Poultry Science Journal 2018, 74(1), 89-100. https://doi.org/10.1017/S0043933917001040

Bennedsen, M.; Wang, X.; Willén, R.; Wadström, T.; Andersen, L.P. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunology Letters 2000, 70(3), 185-189. https://doi.org/10.1016/s0165-2478(99)00145-5

Goh, S.H.; Hew, N.F.; Norhanom, A.W.; Yadav, M. Inhibition of tumour promotion by various palm-oil tocotrienols. International Journal of Cancer 1994, 57, 529-531. https://doi.org/10.1002/ijc.2910570415

Takahashi, K.; Loo, G. Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells. Biochemistry and Pharmacology 2004, 67(2), 315-324. https:// doi.org/10.1016/j.bcp.2003.07.015

Vasanthi, H.R.; Parameswari, R.P.; Das, D.K. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. Genes and Nutrition 2012, 7(1), 19-28. https://doi.org/10.1007/s12263-011-0227-9

Khanna, S.; Parinandi, N.L.; Kotha, S.R.; Roy, S.; Rink, C.; Bibus, D.; Sen, C.K. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. Journal of Neurochemistry 2010, 112(50), 1249-1260. https://doi.org/10.1111/j.1471-4159.2009.06550.x

Park, J.W.; Kwon, O.K.; Ryu, W.H.; Paik, J.H.; Paryanto, I.; Yuniato, P.; Choi, S.; Oh, S.R.; Ahn, K.S. Anti-inflammatory effects of Passiflora foetida L. in LPS-stimulated RAW264.7 macrophages. International Journal of Molecular Medicine 2018, 41(6), 3709-3716. https://doi.org/10.3892/ijmm.2018.3559

Pierce, G.F. Macrophages: important physiologic and pathologic sources of polypeptide growth factors. American Journal of Respiratory Cell and Molecular Biology 1990, 2(3), 233-234. https://doi.org/ 10.1165/ajrcmb/2.3.233

Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W.; Yang, M.; Hou, C. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of MAPKs activation. Food and Nutrition Research 2019, 63, 3392. https://doi.org/10.29219/fnr.v63.3392

Lee, J.Y.; Li, C.; Surayot, U.; Yelithao, K.; Lee, S.M.; Park, W.; Tabarsa, M.; You, S.G. Molecular structures, chemical properties and biological activities of polysaccharide from Smilax glabra rhizome. International Journal of Biological Macromolecules 2018, 120(10), 1726-1733. https://doi.org/10.1016/j.ijbiomac.2018.09.138

Wei, J.; Zhang, X.; Bi, Y.; Miao, R.; Zhang, Z.; Su, H. Anti-inflammatory effects of Cumin essential oil by blocking JNK, ERK, and NF-κB signaling pathways in LPS-stimulated RAW264.7 cells. Evidence-Based Complementary and Alternative Medicine 2015, 2015, 474509. https://doi.org/10.1155/2015/474509

Chang, M.; Qiu, F.; Lan, N.; Zhang, T.; Guo, X.; Jin, Q.; Liu, R.; Wang, X. Analysis of phytochemical composition of Camellia oleifera oil and evaluation of its anti-inflammatory effect in lipopolysaccharide-stimulated RAW264.7 macrophages. Lipids 2020, 55(4), 353-363. https://doi.org/10.1002/lipd.12241

Anyanji, V.U.; Mohamed, S.; Zokti, J.A.; Ado, M.A. Anti-inflammatory properties of oil palm leaf (Elaeis guineensis Jacq.) extract in aged rats. International Journal of Pharmacy and Pharmaceutical Sciences 2013, 5(4), 134-136.

Wu, S.J.; Liu, P.L.; Ng, L.T. Tocotrienol-rich fraction of palm oil exhibits anti- inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Molecular Nutrition and Food Research 2008, 52(8), 921-929. https://doi.org/10.1002/mnfr.200700418

AOAC. Official Methods of Analysis, 20th Ed.; The Association of Official Analytical Chemists, Maryland, USA. 2000.

AOAC. Official Methods of Analysis, 19th Ed.; The Association of Official Analytical Chemists, Washington DC, USA. 2016.

Ribeiro, H.S.; Chu, B.S.; Ichikawa, S.; Nakajima, M. Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids 2008, 22(1), 12-17. https://doi.org/10.1016/j.foodhyd.2007.04.009

Lai, O-M.; Phuah, E-T.; Lee, Y-Y.; Basiron, Y. Palm Oil. In Shahidi, F. (Eds.), Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Ltd., West Sussex, 2020, pp. 385-486.

Aung, L.L.; Pe, M.; Hla, P.K. Palm Oil Fractionation Process. Journal of the Myanmar Academy of Arts and Science 2009, 7(1), 435-446.

Chen, C.W.; Lai, O.M.; Ghazali, H.M.; Chong, C.L. Isothermal crystallization kinetics of refined palm oil. Journal of the American Oil Chemist’ Society 2002, 79(4), 403-410. https://doi.org/10.1007/s11746-002-0496-4

Mayamol, P.N.; Balachandran, C.; Samuel, T.; Sundaresan, A.; Arumughan, C. Process Technology for the production of micronutrient rich red palm olein. Journal of the American Oil Chemists' Society 2007, 84, 587–596. Retrieved from https://link.springer.com/article/10.1007/s11746-007-1078-9

Shammugasamy, B.; Ramakrishnan, Y.; Manan, F.; Muhammad, K. Rapid reversed-phase chromatographic method for determination of eight vitamin E isomers and γ-oryzanols in rice bran and rice bran oil. Food Analytical Methods 2015, 8(3), 649–655. https://doi.org/10.1007/s12161-014-9929-0

Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Widhnok. J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 1982, 126(1), 131-138. https://doi.org/10.1016/0003-2697(82)90118-x

Surayot, U.; Yelitho, K.; Tabarsa, M.; Lee, D.H.; Palanisamy, S.; Prahu N.M.; Lee, J.; You, S.G. Structural characterization of a polysaccharide from Certaria islandica and assessment of immunostimulatory activity.Process Biochemistry 2019, 83(1), 214-221. https://doi.org/10.1016/j.procbio.2019.05.022

Dijkstra, J. About water degumming and the hydration of non-hydratable phosphatides. European Journal of Lipid Science and Technology 2017, 119, 1600496. https://doi.org/10.1002/ejlt.201600496

Bonnie, T.Y.P.; Choo, Y.M. Valuable minor constituents of commercial red palm olein: carotenoids, vitamin E, ubiquinones and sterols. Journal of Oil Palm Research 2000, 12(1), 97-108.

De Greyt, W. Edible oil refining: Current and future technologies. In: Hamm,W.; Hamilton, R.J.; Calliauw, G. (Eds.), Edible oil processing, Wiley-Blackwell, West Sussex, 2013, pp. 127-148.

Yang, D.; Lee, Y.Y; Lu, Y.; Wang, Y; Zhang, Z. Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components. Molecules 2024, 29(8), 1847. https://doi.org/10.3390/molecules29081847

Zahran, H.A.; Tawfeuk, H.Z. Physicochemical properties of new peanut (Arachis hypogaea L.) varieties. Oil seeds and Fats 2019, 26(2). https://doi.org/10.1051/ocl/2019018

Edem, D.O. Palm oil: Biochemical, physiological, nutritional, hematological and toxicological aspects: A review. Plant Foods Human Nutrition 2002, 57, 319-341. https://doi.org/10.1023/a:1021828132707

Kellens, M.; Gibon, V.; Hendrix, M.; Grey, W.D. Palm oil fractionation. European Journal of Lipid Science and Technology 2007, 109(4), 336–349. https://doi.org/10.1002/ejlt.200600309

Kritchevsky, D. Impact of red palm oil on human nutrition and health. Food and Nutrition Bulletin 2000, 21(2), 182-188. https://doi.org/10.1177/156482650002100212

Schwingshackl, L.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: A systematic review and meta-analysis of observational studies. International Journal of Cancer 2014, 135(18), 1884-1897. https://doi.org/10.1002/ijc.28824

Yoon, W.J.; Moon, J.Y.; Song, G.; Lee, Y.K.; Han, M.S.; Lee, J.S.; Ihm, B.S.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Food and Chemical Toxicology 2010, 48(5), 1222-1229. https://doi.org/10.1016/j.fct.2010.02.014

Kim, K.N.; Ko, Y.J.; Yang, H.M.; Ham, Y,M.; Roh, S.W.; Jeon, Y.J.; Ahn, G.; Kang, M.C.; Yoon, W.J.; Kim,D.; Oda, T. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food and Chemical Toxicology 2013, 57, 126-131. https://doi.org/10.1016/j.fct.2013.03.017

Shen, C.Y.; Zhan, T.; Zhang, W.L.; Jiang, J.G. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L. Food and Function 2016, 7(10), 4451-4459. https://doi.org/10.1039/c6fo00795c

Yang, J.; Lee, S.Y.; Jang, S.K.; Kim, K.J.; Park, M.J. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics 2023, 15(6), 1595. https://doi.org/10.3390/pharmaceutics15061595

Ghosh, N.R.; Chaki, V.; Mandal, S.C. COX-2 as a target for cancer chemotherapy. Pharmacological Reports 2010, 62(2), 233-244. https://doi: 10.1016/s1734-1140(10)70262-0

Xiang, X.W.; Wang, R.; Yao, L.W.; Zhou, Y.F.; Sun, P.L.; Zheng, B.; Chen, Y.F. Anti-inflammatory effects of Mytilus coruscus polysaccharide on RAW264.7 cells and DSS-induced colitis in mice. Marine drugs 2021, 19(8), 468. https://doi.org/10.3390/md19080468

Kaminska, B.; Gozdz, A.; Zawadzka, M.; Aleksandra, E.M.; Lipko, M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. The Anatomical Record 2009, 292(12), 1902-1913. https://doi.org/10.1002/ar.21047