Structural and Electrical Characteristics of CaCu3-xFexTi4O12 Ceramics
Main Article Content
Abstract
Fe3+ doped CaCu3Ti4O12 ceramics were successfully synthesized using a ball-milling oxide approach. Introducing Fe3+ doping resulted in a refined microstructure, significantly reducing the mean grain size of the CaCu3Ti4O12 ceramics. Dielectric property measurements were conducted at various temperatures. Increasing the Fe3+ content from 0 to 0.1 mol at room temperature led to a substantial decrease in dielectric permittivity, dropping from approximately 66246 to 435 at 10 kHz. This reduction in dielectric permittivity is closely associated with a substantial increase in grain resistance, which results in lower polarization density per volume and further contributes to the decline in dielectric permittivity. Additionally, low-frequency relaxation was observed at room temperature due to Fe3+ doping, likely attributed to grain boundary effects, specifically grain boundary relaxation. At elevated temperatures, the influence of grain boundaries in the doped ceramics becomes more pronounced than the extremely high grain resistance, leading to complete interfacial polarization and, thus, high dielectric permittivity within this temperature range. Furthermore, all Fe3+ doped CaCu3Ti4O12 ceramics exhibited nonlinear J-E characteristics, with the breakdown electric field enhanced from 31 to 41 V/cm due to Fe3+ doping. Although the doping of Fe3+ into the CaCu3Ti4O12 lattice does not enhance the energy storage properties due to the reduced permittivity at room temperature, the findings from this study provide crucial fundamental information. This knowledge will serve as a valuable foundation for researchers interested in developing CaCu3Ti4O12 ceramics, enabling further advancements in applications for electronic devices, energy storage, or other advanced technologies in the future.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Rhouma, S.; Megriche, A.; Souidi, E.; Saîd, S.; Autret-lambert, C. Improvement of the Nonlinear and Dielectric Properties of CaCu₃Ti₄O₁₂ Ceramics by Nickel Doping. J. Inorg. Organomet. Polym. Mater. 2023, 34, 221–234. https://doi.org/10.1007/s10904-023-02816-4
Nachaithong, T.; Saengvong, P.; Sreejivungsa, K.; Srepusharawoot, P.; Thongbai, P.; Moontragoon, P. Huge permittivity with decreasing dissipation factor and humidity sensing properties of CaCu₂.₉Mg₀.₁Ti₄.₂₋ₓGeₓO₁₂ ceramics. Materialia 2024, 34, 102061. https://doi.org/10.1016/j.mtla.2024.102061
Li, J.Y.; Zhao, X.T.; Li, S.T.; Alim, M.A. Intrinsic and extrinsic relaxation of CaCu₃Ti₄O₁₂ ceramics: Effect of sintering. J. Appl. Phys. 2010, 108, 104104. https://doi.org/10.1063/1.3511444
Subramanian, M.A.; Li, D.; Duan, N.; Reisner, B.A.; Sleight, A.W. High Dielectric Constant in ACu₃Ti₄O₁₂ and ACu₃Ti₃FeO₁₂ Phases. J. Solid State Chem. 2000, 151, 323–325. https://doi.org/10.1006/jssc.2000.8703
Nautiyal, A.; Autret, C.; Honstettre, C.; De Almeida Didry, S.; El Amrani, M.; Roger, S.; Negulescu, B.; Ruyter, A. Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu₃₋ᵧMgᵧ)Ti₄O₁₂ ceramics: Importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 2016, 36, 1391–1398. https://doi.org/10.1016/j.jeurceramsoc.2015.12.035
Boonlakhorn, J.; Suksangrat, P.; Srepusharawoot, P. Dielectric properties of the Ca₀.₂₅Cu₀.₇₅₋ₓAlₓTiO₃ ceramics: experimental and computational investigations. Mater. Res. Express 2024, 11, 026303. https://doi.org/10.1088/2053-1591/ad2799
Mao, P.; Lu, G.; Yan, Q.; Annadi, A.; Guo, Y.; Wang, Z.; Liu, Z.; Xie, B.; Zhang, L. Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu₃Ti₄O₁₂ ceramics. Ceram. Int. 2022, 48, 32156–32163. https://doi.org/10.1016/j.ceramint.2022.07.157
Wu, K.; Huang, Y.; Li, J.; Li, S. Space charge polarization modulated instability of low frequency permittivity in CaCu₃Ti₄O₁₂ ceramics. Appl. Phys. Lett. 2017, 111, 042902. https://doi.org/10.1063/1.4995968
Sinclair, D.C.; Adams, T.B.; Morrison, F.D.; West, A.R. CaCu₃Ti₄O₁₂: One-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153–2155. https://doi.org/10.1063/1.1463211
Lv, Y.; Zhang, J.; Li, P.; Deng, T.; Nan, Y.; Lei, Z.; Li, Y.; Li, L. Microstructure and dielectric properties of Na and Ni co-substituted CaCu₃Ti₄O₁₂ ceramics with high dielectric constant and low loss. Mater. Chem. Phys. 2024, 315, 128973. https://doi.org/10.1016/j.matchemphys.2024.128973
Tsyganov, A.; Morozova, N.; Vikulova, M.; Asmolova, A.; Zotov, I.; Bainyashev, A.; Gorokhovsky, A.; Gorshkov, N. Thermal behavior of La³⁺, Ni²⁺ and Sn⁴⁺ co-doped CaCu₃Ti₄O₁₂ ceramics dielectric response. Inorg. Chem. Commun. 2024, 160, 111914. https://doi.org/10.1016/j.inoche.2023.111914
Zhang, J.; Deng, T.; Li, P.; Lv, Y.; Nan, Y.; Lei, Z.; Li, Y.; Li, L. Enhanced breakdown strength and dielectric loss of Ca₁₋₃ₓ/₂EuₓCu₃Ti₄O₁₂ ceramics prepared by polymer pyrolysis. J. Mater. Sci.: Mater. Electron. 2024, 35, 246. https://doi.org/10.1007/s10854-024-12001-z
Xue, R.; Zhao, L.; Liu, X.; Wang, H.; Zhu, X.; Xiao, Y.; Yuan, C.; Cao, B.; Chen, Z.; Li, T.; Dai, H. Enhanced optical, dielectric, and non-Ohmic properties in Ta-doped Bi₂/₃Cu₃Ti₄O₁₂ ceramics. Solid State Sci. 2024, 150, 107495. https://doi.org/10.1016/j.solidstatesciences.2024.107495
Ni, L.; Chen, X.M. Enhanced giant dielectric response in Mg-substituted CaCu₃Ti₄O₁₂ ceramics. Solid State Commun. 2009, 149, 379–383. https://doi.org/10.1016/j.ssc.2008.12.016
Boonlakhorn, J.; Chanlek, N.; Krongsuk, S.; Thongbai, P.; Srepusharawoot, P. Giant dielectric properties of Mg doped CaCu₃Ti₄O₁₂ fabricated using a chemical combustion method: theoretical and experimental approaches. Mater. Res. Bull. 2022, 150, 111749. https://doi.org/10.1016/j.materresbull.2022.111749
Peng, Z.; Li, J.; Liang, P.; Yang, Z.; Chao, X. Improved dielectric properties and grain boundary response of SrTiO₃ doped Y₂/₃Cu₃Ti₄O₁₂ ceramics fabricated by Sol-gel process for high-energy-density storage applications. J. Eur. Ceram. Soc. 2017, 37, 4637–4644. https://doi.org/10.1016/j.jeurceramsoc.2017.06.025
Li, W.; Schwartz, R.W. ac conductivity relaxation processes in CaCu₃Ti₄O₁₂ ceramics: Grain boundary and domain boundary effects. Appl. Phys. Lett. 2006, 89, 242906. https://doi.org/10.1063/1.2405382
Ivanov, M.S.; Amaral, F.; Khomchenko, V.A.; Paixão, J.A.; Costa, L.C. Investigation of micro- and nanoscale barrier layer capacitance mechanisms of conductivity in CaCu₃Ti₄O₁₂ via scanning probe microscopy technique. RSC Adv. 2017, 7, 40695–40704. https://doi.org/10.1039/C7RA06385G
Boonlakhorn, J.; Prachamon, J.; Manyam, J.; Krongsuk, S.; Thongbai, P.; Srepusharawoot, P. Colossal dielectric permittivity, reduced loss tangent and the microstructure of Ca₁₋ₓCdₓCu₃Ti₄O₁₂₋₂ᵧF₂ᵧ ceramics. RSC Adv. 2021, 11, 16396–16403. https://doi.org/10.1039/D1RA02707G
Boonlakhorn, J.; Thongbai, P.; Putasaeng, B.; Kidkhunthod, P.; Maensiri, S.; Chindaprasirt, P. Microstructural evolution, non-Ohmic properties, and giant dielectric response in CaCu₃Ti₄₋ₓGeₓO₁₂ ceramics. J. Am. Ceram. Soc. 2017, 100, 3478–3487. https://doi.org/10.1111/jace.14886
Boonlakhorn, J.; Chanlek, N.; Srepusharawoot, P.; Thongbai, P. Controlling microstructure and significantly increased dielectric permittivity with largely reduced dielectric loss in CaCu₃₋ₓGeₓTi₄O₁₂ ceramics. Appl. Phys. A 2020, 126, 897. https://doi.org/10.1007/s00339-020-04069-1
Boonlakhorn, J.; Chanlek, N.; Srepusharawoot, P.; Thongbai, P. Improved dielectric properties of CaCu₃₋ₓSnₓTi₄O₁₂ ceramics with high permittivity and reduced loss tangent. J. Mater. Sci.: Mater. Electron. 2020, 31, 15599–15607. https://doi.org/10.1007/s10854-020-04123-x
Boonlakhorn, J.; Thongbai, P. Dielectric properties, nonlinear electrical response and microstructural evolution of CaCu₃Ti₄₋ₓSnₓO₁₂ ceramics prepared by a double ball-milling process. Ceram. Int. 2020, 46, 4952–4958. https://doi.org/10.1016/j.ceramint.2019.10.233
Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551
Zhuk, N.A.; Lutoev, V.P.; Lysyuk, A.Y.; Makeev, B.A.; Belyy, V.A.; Nekipelov, S.V.; Sivkov, V.N.; Koroleva, A.V.; Krzhizhanovskaya, M.G.; Beznosikov, D.S. Thermal behavior, magnetic properties, ESR, XPS, Mössbauer and NEXAFS study of Fe-doped CaCu₃Ti₄O₁₂ ceramics. J. Alloys Compd. 2021, 855, 157400. https://doi.org/10.1016/j.jallcom.2020.157400
Mu, C.; Zhang, H.; He, Y.; Liu, P. Influence of temperature on dielectric properties of Fe-doped CaCu₃Ti₄O₁₂ ceramics. Physica B Condens. Matter 2010, 405, 386–389. https://doi.org/10.1016/j.physb.2009.08.093
Rai, A.K.; Singh, N.K.; Lee, S.-K.; Mandal, K.D.; Kumar, D.; Parkash, O. Dielectric properties of iron doped calcium copper titanate, CaCu₂.₉Fe₀.₁Ti₄O₁₂. J. Alloys Compd. 2011, 509, 8901–8906. https://doi.org/10.1016/j.jallcom.2011.06.008
Zhuk, N.A.; Krzhizhanovskaya, M.G.; Sekushin, N.A.; Kharton, V.V.; Koksharova, L.А. Thermal expansion and electrical properties of Fe-doped CaCu₃Ti₄O₁₂ ceramics. Mater. Chem. Phys. 2020, 258, 123996. https://doi.org/10.1016/j.matchemphys.2020.123996
Cahn, J.W. The impurity-drag effect in grain boundary motion. Acta Metallurgica 1962, 10, 789–798. https://doi.org/10.1016/0001-6160(62)90092-5
Wu, K.; Huang, Y.; Hou, L.; Tang, Z.; Li, J.; Li, S. Effects of dc bias on dielectric relaxations in CaCu₃Ti₄O₁₂ ceramics. J. Mater. Sci.: Mater. Electron. 2018, 29, 4488–4494. https://doi.org/10.1007/s10854-017-8396-y
Mao, P.; Sun, J.; Guo, Y.; Li, W.; Xiao, P.; Gerhard, M.S.; Liu, Z.; Xie, B.; Zhang, L. Giant permittivity response and enhanced nonlinear electrical properties in a novel perovskite-like ceramic with multiple elements. Ceram. Int. 2024, 50, 22501–22513. https://doi.org/10.1016/j.ceramint.2024.03.352
Ni, L.; Fu, M.; Zhang, Y. Dielectric relaxation and relevant mechanism in giant dielectric constant Sm₂/₃Cu₃Ti₄O₁₂ ceramics. J. Mater. Sci.: Mater. Electron. 2018, 29, 17737–17742. https://doi.org/10.1007/s10854-018-9880-8