Vegetative, Photosynthetic, and Anthocyanin Content of Turmeric (Curcuma longa L.) Applied with Organic Foliar Fertilizers

Main Article Content

Pet Roey L. Pascual
Edivine A. Remedios
Nonna Fatima Abello
Danny E. Carabio
Valerie U. Pascual
Rosalyn P. Alburo

Abstract

In the Philippines, turmeric is used as a preservative and as medicine. However, due to the limited knowledge of its fertilizer management, this has resulted in low growth and yield. Foliar fertilizers are now commonly used in organic farming. A study was done to evaluate the effect of different foliar fertilizers: seaweed, bamboo shoot, Japanese snail, and commercial liquid fertilizer, arranged in a randomized complete block design with three replications, based on vegetative, photosynthetic, and anthocyanin content using methanol extraction of turmeric. Photosynthetic parameters were measured using the Li-6800 Portable Photosynthesis System. Results demonstrated that fermented seaweed significantly enhanced vegetative growth, increasing plant height at 19.72 ± 2.00 SD cm (3rd week), 28.53 ± 1.68 SD cm (5th week), and 36.40 ± 1.31 SD cm (7th week), and leaf length by 2.57 cm relative to the control. In contrast, the application of fermented Japanese snail yielded the highest anthocyanin concentration at 5.18 ± 0.14 SE µg/g and markedly improved photosynthetic traits, including assimilation rate at 11.26 ± 0.31 mmol CO₂ m⁻² s⁻¹, stomatal conductance to CO₂ at 393.71 ± 7.41 SD mmol m⁻² s⁻¹ and total conductance at 42 ± 1.18 SD Pa. Notably, anthocyanin content exhibited a strong positive correlation with assimilation rate (R=0.99) stomatal conductance (R=0.84) and total conductance (R=0.84), and a negative correlation with plant height (R=0.61). Thus, the application of fermented seaweed can enhance morphological parameters, while the fermented Japanese snail foliar application resulted in better photosynthetic efficiency and anthocyanin content.

Article Details

Section
Research Articles

References

Ishita, C.; Biswas, K.; Bandyopadhyay, U.; Banerjee, R. K. Turmeric and Curcumin: Biological Actions and Medicinal Applications. Current Science. 2004, 87(1), 44-53.

Majeed, Y.; Ziaf, K.; Ghani, M. A.; Ahmad, I.; Ahmad, M. A.; Abbasi, K. Y.; Mujahid H. Cheema, K.L. Effect of different combinations of organic and synthetic sources of nutrients on growth, yield and quality parameters of turmeric under Faisalabad conditions. Journal of Environmental and Agricultural Science. 2020, 22, 1-7.

Fernando, K. M. C.; Ekanayake, E. M. U. I. Plant growth, foliage senescence and rhizome yield of turmeric (Curcuma domestica L.) as affected by inorganic and organic fertilizers. Tropical Agricultural Research and Extension. 2022, 25(4), 344. https://doi.org/10.4038/tare.v25i4.5604

Chandravanshi, O. K.; Meena, K. C.; Khan, K. A.; Soni, N.; Patidar, D. K. Responses of organic manures and inorganic fertilizers on growth, yield and economics of turmeric (Curcuma longa Linn.). Journal of Medicinal Plants Studies. 2021, 9(3), 243-247.

Kramer, S.; Reganold, J.; Glover, J.; Bohannan, B.; Mooney, H. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103 (12), 4522-4527. https://doi.org/10.1073/pnas.0600359103

Dauda, S.; Ajayi, F.; Ndor, E. Growth and yield of water melon (Citrullus lanatus) as affected by poultry manure application. Journal of Agriculture and Social Sciences. 2008, 4.

Naeem, M.; Iqbal, J.; Bakhsh, M. A. A. Comparative Study of Inorganic Fertilizers and Organic Manures on yield and yield Components of Mungbean (Vigna radiata L.). Journal of Agriculture and Social Sciences. 2006, 2, 227-229.

Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nature Plants. 2016, 2. 15221. https://doi.org/10.1038/nplants.2015.221

Mehdawe, A.; Mahadeen, A.; Al-Ramamneh, E. A. M. Foliar Application of Moringa Leaf Extracts Affects Growth, Yield and Mineral Composition of Pepper (Capsicum Annuum L.) Under Greenhouse Conditions. Journal of Ecological Engineering. 2023, 24(6), 329-337. https://doi.org/10.12911/22998993/163196

Souri, M. K.; Aslani, M. Beneficial effects of foliar application of organic chelate fertilizers on French bean production under field conditions in a calcarous soil. Advances in Horticultural Science. 2018, 32(2), 265–272.

Shindhe, V.; Dhanoji, M. M.; Meena, M. K.; Patil, R.P. Influence of foliar organic nutrition on growth, yield and yield components of sunflower. J Pharmacogn Phytochem. 2020, 9(1), 1267-1269.

Marczylo, T. H.; Cooke, D.; Brown, K.; Steward, W. P.; Gescher, A. J. Pharmacokinetics and metabolism of the putative cancer chemopreventive agent cyanidin-3-glucoside in mice. Cancer Chemotherapy Pharmacology. 2009, 64, 1261-1268. https://doi.org/10.1007/s00280-009-0996-7

Sandoval-Ramirez, B. A.; Catalan, U.; Fernandez-Castillejo, S.; Rubió, L.; Macià, A.; Solà, R. Anthocyanin tissue bioavailability in animals: possible implications for human health. A systematic review. Journal of Agricultural and Food Chemistry. 2018, 66, 11531-11543. https://doi.org/10.1021/acs.jafc.8b04014

Lin, B. W.; Gong, C. C.; Song H. F.; Cui Y. Y. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology. 2017, 174, 1226-1243. https://doi.org/10.1111/bph.13627

Chinedum, E.; Kate, E.; Sonia, C.; Ironkwe, A.; Andrew, I. Polyphenolic Composition and Antioxidant Activities of 6 New Turmeric (Curcuma Longa L.) Accessions. Recent Pat Food Nutr Agric. 2015, 7(1), 22-27. https://doi.org/10.2174/2212798407666150401104716

Bochalya, R.; Irungbam, P.; Bandyopadhyay, P.; Mallick, R.; Kant, K.; Gogoi, M. Performance of spring hybrid Sunflower (Helianthus annuus L. Var. GKSF-2002) under different foliar nutrients and growth regulators in West Bengal. 2018.

Kjeldahl, J. A. New Method for the Determination of Nitrogen in Organic Matter. Zeitschrift für Analytische Chemie 1883, 22, 366-382. https://doi.org/10.1007/BF01338151

Baadenhuijsen, H.; Seuren-Jacobs, H. E.; Jansen, A. P. Continuous-flow determination of serum inorganic phosphate with a single reagent--the vanadomolybdate method re-evaluated., Clinical Chemistry. 1977, 23(7), 1275-1280. https://doi.org/10.1093/clinchem/23.7.1275

Taylor, A. Encyclopedia of Spectroscopy and Spectrometry || Biomedical Applications of Atomic Spectroscopy. 1999, 139-147. https://doi.org/10.1006/rwsp.2000.0022

Wrolstad, R. E.; Acree, T. E.; Decker, E. A.; Penner, M. H.; Reid, D. S.; Schwartz, S. J.; Shoemaker, C. F.; Smith, D.; Sporns, P. Current Protocols in Food Analytical Chemistry || Extraction, Isolation, and Purification of Anthocyanins 2001. https://doi.org/10.1002/0471142913.faf0101s00

Pascual, P. R. L.; Carabio, D. E,; Abello, N. F. H.; Remedios, E. A.; Pascual, V. Enhanced assimilation rate due to seaweed biostimulant improves growth and yield of rice bean (Vigna mbellate). Agronomy Research. 2021.

Pascual, P. R. L.; Carabio, D. E.; Rondina, M. E.; Abello, N. F. H.; Pascual, V. U. Fermented seaweed (Kappaphycus alverezii) by-product promotes growth and development of lettuce (Lactuca sativa var. Curly green). Plant cell biotechnology and molecular biology. 2020, 21(71-72), 208-214.

Mohanty, D.; Adhikary, S. P.; Chatopadhyay, G. N.; Prof, P. C. Seaweed liquid fertilizer (slf) and its role in agriculture productivity. Journal of Environmental Science. 2013, 3, 23-26.

Huda, M. N.; Mannan, M. A.; Bari, M. N.; Rafiquzzaman, S. M.; Higuchi, H. Red seaweed liquid fertilizer increases growth, chlorophyll and yield of mungbean (Vigna radiata). Agronomy Research. 2023, 21, https://doi.org/10.15159/ar.23.011

Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple and strawberry. J. Horticut. Sci. Biotnol. 2010, 131-137. https://doi.org/10.1080/14620316.2009.11512610

Tay, S. A. B.; Macleod, J. K.; Palni, L. M. S.; Letham, D. S. Detection of cytokinins in a seaweed extract Phytochemistry. 1985, 24, 2611-2614. https://doi.org/10.1016/S0031-9422(00)80679-2

Mukherjee, A.; Patel, J. S. Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmenatal Science and Technology. 2019, 17, 553-558. https://doi.org/10.1007/s13762-019-02442-z

Liu, Z.; Lijun, L. Effects of Plant growth regulators and saccharide on in vitro plant and tuberous root regeneration of Cassava. Journal of Plant Growth Regulation. 2011, 30(1), 11-19. https://doi.org/10.1007/s00344-010-9163-y

Jayasinghe, P. Effect of Seaweed Liquid Fertilizer on Plant Growth of Capsicum annum. Discovery An International Journal. 2016, 52, 723-728.

Munisamy, S.; Kosalaraman, K.; Devika, R. Seaweed plant nutrients to enhance the population and health of earthworm (Eudrilus eugeniae) along with crop betterment in chili Capsicum annum (var. Kkm-ch1) under pot culture. Journal of Agriculture and Environment. 2018, 2(6).

Abbas, R. M.; Anwar, J.; Zafar-Ul-Hye, M.; Khan, R.; Rahi A.; Danish, S.; Datta, R. Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae. 2020, 6(2), 28. https://doi.org/10.3390/horticulturae6020028

Shipley, B. Net assimilation rate, specific leaf area and mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct Ecol. 2006, 20, 565-574. https://doi.org/10.1111/j.1365-2435.2006.01135.x

Poorter, H.; Nagel, O. W. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology. 2000, 27. https://doi.org/10.1071/PP99173_CO

Lawlor, D. W. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. Journal of Experimental Botany. 2002, 53, 773-787. https://doi.org/10.1093/jexbot/53.370.773

Carabio, D. E.; Pascual, V. U.; Abello, N. F. H.; Rondina, M. E.; Pascual, P. R. L. Combined application of fermented bamboo (Bambusa spinosa) and mollusk (Achatina fulica) liquid fertilizer can Improved lettuce (Lactuca sativa var. Curly green) production. Plant cell biotechnology and molecular biology. 2021, 22(3-4), 56-64.

Mcausland, L.; Vialet-Chabrand, S.; Davey, P.; Baker, N. R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist. 2016, 211, 1209-1220. https://doi.org/10.1111/nph.14000

Lawson, T.; Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology. 2014, 164, 1556-1570. https://doi.org/10.1104/pp.114.237107

Liu, F.; Andersen, M.; Jacobsen, S.E.; Jensen, C. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environmental and Experimental Botany. 2005, 54, 33-40. https://doi.org/10.1016/j.envexpbot.2004.05.002

Wang, C. X.; Yue, X. W.; Shi, L. T.; Li, K.; Li, X. Y.; Fang, H. D.; Pan, Z. X. Responses of photosynthesis and yield of jujube to different proportions of organic fertilizer and biochar in Yuanmou dry-hot valley, Chinese Journal of Tropical Crops. 2022, 43, 28-136.

Su, Y.; Huang, S. L. Effects of Bio-organic Fertilizer on Flue-cured Tobacco Photosynthetic Characteristics and Rhizosphere Soil Microorganism, Journal of Agricultural Science and Technology. 2022, 24, 164-171. https://doi.org/10.13304/j.nykjdb.2020.0731

Chen, G. Y.; Chen, J.; Xu, D. Q. Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration, Plant Physiol. Comm. 2010, 46, 64-66

Zhu, K.; Wang, A.; Wu, J.; Yuan, F.; Guan, D. X.; Jin, C.; Zhang, Y.; Gong, C. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Scientific Reports. 2020, 10(1), 10038. https://doi.org/10.1038/s41598-020-66886-x

Wang, J.; Lu, X.; Zhang, J.; Ouyang, Y.; Qin, Z.; Zhao, B. Using golden apple snail to mitigate its invasion and improve soil quality: a biocontrol approach. Environ Sci Pollut Res Int. 2020, 27(13), 14903-14914. https://doi.org/10.1007/s11356-020-07998-9

Rho, T.; Doty, Sharon.; Kim, Soo-Hyung. Endophytes Alleviate the Elevated CO2-dependent Decrease in Photosynthesis in Rice, Particularly under Nitrogen Limitation. Journal of experimental botany. 2019, 71(2), 707-718. https://doi.org/10.1093/jxb/erz440

Ainsworth, E. A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment. 2007, 30, 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Zhu, X. G.; Long, S. P., Ort, D. R. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology. 2010, 61, 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206

Liu, Y.; Tikunov, Y.; Schouten, R.; Marcelis, L. F. M.; Visser, R.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Frontiers in Chemistry. 2018, 6, 52. https://doi.org/10.3389/fchem.2018.00052

Zhang, X.; Wei, J.; Huang, Y.; Shen, W.; Chen, X.; Lu, C.; Su, N.; Cui, J. Increased Cytosolic Calcium Contributes to Hydrogen-Rich Water-Promoted Anthocyanin Biosynthesis Under UV-A Irradiation in Radish Sprouts Hypocotyls. Frontiers in Plant Science. 2018, 9. https://doi.org/10.3389/fpls.2018.01020

Xu, W.; Peng, H.; Yang, T.; Whitaker, B.; Huang, H.; Sun, J.; Chen, P. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiology and Biochemistry. 2014, 82, 289-298. https://doi.org/10.1016/j.plaphy.2014.06.015

Shin, D. H.; Choi, M.; Lee, H. K.; Cho, M.; Choi, S. B.; Choi, G.; Park, Y. Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochemical and Biophysical Research Communications. 2013, 430(2), 634-639. https://doi.org/10.1016/j.bbrc.2012.11.100

Ai, T. N.; Naing, A. H.; Arun, M.; Lim, S. H.; Kim, C. K. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors. Plant Science. 2016, 252, 144-150. https://doi.org/10.1016/j.plantsci.2016.06.021

Kovinich, N.; Kayanja, G.; Chanoca, A.; Otegui, M. S.; Grotewold, E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant signaling & behavior. 2015, 10(7). https://doi.org/10.1080/15592324.2015.1027850

Zhang, H.; Zhao, Y.; Zhu, J. K. Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental cell. 2020, 55(5), 529-543. https://doi.org/10.1016/j.devcel.2020.10.012

Ghasemzadeh, A.; Jaafar, H.; Karimi, E.; Ibrahim, M. H. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of Anthocyanin, flavonoids and isoflavonoids from ginger. BMC Complement Altern Med. 2012, 12, 229. https://doi.org/10.1186/1472-6882-12-229

Li, X.; Schmid, B.; Wang, F.; Paine, C. E. Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PloS one. 2016, 11(3), e0150644. https://doi.org/10.1371/journal.pone.0150644

Gould, K. S.; Markham, K. R.; Smith R. H.; Goris J. J. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn., Journal of Experimental Botany. 2000, 51(347), 1107-1115, https://doi.org/10.1093/jexbot/51.347.1107