Enhancing Napier Grass Degradation Efficiency through Microwave Pretreatment and Cellulase Enzyme Application
Main Article Content
Abstract
Napier grass is a promising energy crop for renewable sugar-based carbon production, where effective pretreatment is essential to enhance its biomaterial value. The objective of this research is to determine the optimal conditions for Napier grass pretreatment and achieve the highest level of efficiency in analyzing the initial lignocellulose content, total dissolved solids, and reducing sugars. The research applies Napier grass from the Pak Chong variation in the province of Phra Nakhon Si Ayutthaya, Thailand. Napier grass was pretreated with 0.5% sulfuric acid (v/v) at 140°C for 60 minutes, yielding a maximum cellulose content of 89.62%. This treatment effectively removed hemicellulose and lignin, with only 5.22% and 0.58% remaining, respectively. When the pretreated Napier grass is subjected to thermal and cellulase enzyme degradation and then treated with a microwave at 700 watts for 15 minutes, the initial total dissolved solids amount is 8.13 g/L, with total sugars and reducing sugars at 7.03 g/L and 91.34 mg/g dry weight, respectively. Adding 20 U of cellulase enzyme for 48 hours significantly enhances the degradation rate, resulting in a total sugar content of 13.95 g/L and reducing sugar content of 165.61 mg/g dry weight of Napier grass. The findings of this research are crucial for advancing biomass energy as a sustainable and environmentally friendly renewable energy source. Methane emissions commonly produced during fermentation can be minimized, thereby lowering the carbon footprint of biofuel production. Enhancing the degradation efficiency of Napier grass increases sugar yield, thereby improving its suitability for bioethanol and biofuel production.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Malik, K.; Sharma, P.; Yang, Y.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S. Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Ind. Crops Prod. 2022, 188, 115569. http://doi.org/10.1016/j.indcrop.2022.115569
Azhar, M.; Hajar, S.; Rahmath, A.J.; Azmah, S.M.; Hartinie, G.; Azlan, J.; Faik, M.; Azifa, A.; Rodrigues, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52-61. http://doi.org/10.1016/j.bbrep.2017.03.002
Chakraborty, P.; Kumar, R.; Chakrabortty, S.; Saha, S.; Chattaraj, S.; Roy, S.; Banerjee, A.; Tripathy, S.K.; Ghosh, A.K.; Jeon, B.H. Technological advancements in the pretreatment of lignocellulosic biomass for effective valorization: A review of challenges and prospects. J. Ind. Eng. Chem, 2024, 36, 145-152. http://doi.org/10.1016/j.jiec.2023.09.001
Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31(3), 426-428. http://doi.org/10.1021/ac60147a030
Smith, J.D.; Johnson, A.B. Analysis of total sugar content using spectrophotometry. J. Anal. Chem. 2020, 15(3), 210-225.
Sukkaew, A. The Optimal Conditions of Saccharification and Fermentation Processes for Ethanol Production from Bagasse and Economic Feasibility Analysis. J. Phys. Conf. Ser. 2021, 1835(1), b012113. http://doi.org/10.1088/1742-6596/1835/1/012113
Subden, R.E.; Krizus, A.; Osothsilp, C.; Viljoen, H.J.J.; van Vuuren, C. Mutational analysis of malate pathways in Schizosaccharomyces pombe. Food Res. Int. 1998, 31(1), 37-42. http://doi.org/10.1016/S0963-9969(98)00056-8
Zhang, H.; Zhang, R.; Song, Y.; Miu, X.; Zhang, Q.; Qu, J.; Sun, Y. Enhanced enzymatic saccharification and ethanol production of corn stover via pretreatment with urea and steam explosion. Bioresour. Technol. 2023, 376, 128856. http://doi.org/10.1016/j.biortech.2023.128856
Baruah, J.; Nath, B.; Sharma, R.; Kumar, S.; Ramesh, D.; Debendra, B.; Eeshan, K. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Energy Res. 2018, 25, 141. http://doi.org/10.3389/fenrg.2018.00141
David, A.N.; Sewsynker-Sukai, Y.; Kana, E.B.G. Development of Kraft waste-based pretreatment strategies for enhanced sugar recovery from lignocellulosic waste. Ind. Crops Prod. 2021, 174, 114222. http://doi.org/10.1016/j.indcrop.2021.114222
Dharmaraja, J.; Shobana, S.; Arvindnarayan, S.; Francis, R.R.; Jeyakumar, R.B.; Saratale, R.G.; Ashokkumar, V.; Bhatia, S.K.; Kumar, V.; Kumar, G. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresour. Technol. 2023, 369, 128328. http://doi.org/10.1016/j.biortech.2023.128328
Mohapatra, S.; Mishra, C.; Behera, S.S.; Thatoi, H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renew. Sustain. Energy Rev. 2017, 78, 1007-1032. http://doi.org/10.1016/j.rser.2017.05.026
Poolakkalody, N.J.; Ramesh, K.; Palliprath, S.; Nittoor, S.N.; Santiago, R.; Kabekkodu, S.P.; Manisseri, C. Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield. Renew. Energy. 2023, 209, 420-430. http://doi.org/10.1016/j.renene.2023.04.008
Raina, N.; Boonmee, R.; Kirdponpattara, S.; Narasingha, M.; Sriariyanun, M.; Phitsuwan, P.; Chuetor, S. Process performance evaluation of different chemical pretreatments of lignocellulosic biomass for bioethanol production. Ind. Crops Prod. 2024, 211, 118207. http://doi.org/10.1016/j.indcrop.2024.118207
Srivastava, N.; Singh, P.; Srivastava, M.; Lal, B.; Singh, R.; Ahmad, I.; Gupta, V.K. A review on the scope and challenges of Saccharum spontaneum waste in the context of lignocellulosic biomass for sustainable bioenergy applications. Renew. Sustain. Energy Rev. 2024, 199, 114477. http://doi.org/10.1016/j.rser.2024.114477
Antunes, F. A. F., Machado, P. E. M., Rocha, T. M., Melo, Y. C. S., Santos, J. C., & da Silva, S. S. (2021). Column reactors in fluidized bed configuration as intensification system for xylitol and ethanol production from napier grass (Pennisetum Purpureum). Chemical Engineering and Processing - Process Intensification, 164, 108399. https://doi.org/10.1016/j.cep.2021.108399
Ismail, K. S. K.; Matano, Y.; Sakihama, Y.; Inokuma, K.; Nambu, Y.; Hasunuma, T.; Kondo, A. Pretreatment of extruded Napier grass byhydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production. Bioresource Technology 2022, 343, 126071. https://doi.org/10.1016/j.biortech.2021.126071
Jomnonkhaow, U.; Imai, T.; Reungsang, A. Microwave-assisted acid and alkali pretreatment of Napier grass for enhanced biohydrogen production and integrated biorefinery potential. Chemical Engineering Journal Advances 2024, 20, 100672. https://doi.org/10.1016/j.ceja.2024.100672
Liu, H.; Kong, Y.; Song, W.; Zhang, R.; Zhang, J.; Sun, Y.; Peng, L. Pretreatment greatly facilitates ethyl levulinate production from catalytic alcoholysis of Napier grass stem. Chemical Engineering Journal 2024, 481, 148559. https://doi.org/10.1016/j.cej.2024.148559
Panakkal, E. J.; Cheenkachorn, K.; Chuetor, S.; Tantayotai, P.; Raina, N.; Cheng, Y.-S.; Sriariyanun, M. Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustainable Energy Technologies and Assessments 2022, 54, 102856. https://doi.org/10.1016/j.seta.2022.102856