Flooring Material from Thermoplastic Elastomer Based on Natural Rubber and Recycled Plastic Waste

Main Article Content

Ekkawit Pianhanuruk
Pongpun Ratchapakdee
Chatree Homkhiew
Uraiwan Sookyung

Abstract

This study investigates the preparation of thermoplastic elastomer flooring materials using a blend of recycled polyethylene (Re-PE) and natural rubber (NR) through simple blending and dynamic vulcanization techniques. This study aims to provide a sustainable alternative to conventional flooring by converting plastic waste into thermoplastic elastomers (TPEs) with tailored properties suited for elderly safety. This research addresses the gap in designing flooring materials with high flexibility, shock absorption, and slip resistance, essential for fall prevention among the aging population. It was observed that the flowability of TPEs decreases as NR content increases. Thermal stability of TPEs exhibits two degradation stages: NR phase degrades at 380-400°C, and the plastic phase at 490-500°C. The degradation temperature increases with increasing plastic content. Mechanical properties of TPEs show that 100% modulus, tensile strength, impact strength, and hardness decrease as the proportion of NR increases. However, the elongation at break increases with increased NR content. Comparing the simple blending technique to dynamic vulcanization, the former yields higher impact strength while the latter results in higher values for the 100% modulus and tensile strength. The preparation of TPEs with a textured surface is obtained through the simple blending technique with a Re-PE/NR ratio of 25/75 due to its superior flowability, which allows for easier texturing. The material exhibits lower hardness and higher friction than other surfaces, reducing accident risk and injury severity. These findings highlight its potential as a practical alternative to conventional flooring, especially in elderly care where slip resistance and cushioning are critical.

Article Details

Section
Research Articles

References

Anantanasuwong, D. Population Ageing in Thailand: Critical Issues in the Twenty-First Century. In Education for the Elderly in the Asia Pacific; Editors Narot, P., Kiettikunwong, N., Eds.; Springer Nature Singapore, Singapore. 2021, pp. 31-56. https://doi.org/10.1007/978-981-16-3326-3_3

Khatami, M.; Bairwan, R. D.; Khalil, H. A.; Surya, I.; Mawardi, I.; Ahmad, A.; Yahya, E. B. The role of natural fiber reinforcement in thermoplastic elastomers biocomposites. Fibers and Polymers 2024, 25(8), 3061-3077. https://doi.org/10.1007/s12221-024-00621-5

Shahroodi, Z.; Katbab, A. A. Preparation and characterization of peroxide‐based dynamically vulcanized thermoplastic elastomer of poly (lactic acid)/chloroprene rubber. Polymer Engineering & Science 2022, 62(5), 1485-1495. https://doi.org/10.1002/pen.25937

Urtekin, G.; Ullah, M. S.; Yildirim, R.; Ozkoc, G.; Kodal, M. A comprehensive review of the recent developments in thermoplastics and rubber blends‐based composites and nanocomposites. Polymer Composites 2023, 44(12), 8303-8329. https://doi.org/10.1002/pc.27712

Belhaoues, A.; Benmesli, S.; Riahi, F. Compatibilization of natural rubber-polypropylene thermoplastic elastomer blend. Journal of Elastomers & Plastics 2020, 52(8), 728-746. https://doi.org/10.1177/0095244319891231

Nair, S. T.; George, S. C.; Kalarikkal, N.; Thomas, S. Enhanced mechanical and thermal performance of multiwalled carbon nanotubes-filled polypropylene/natural rubber thermoplastic elastomers. New Journal of Chemistry 2021, 45(11), 4963-4976. https://doi.org/10.1039/D0NJ05437B

Lima, P.; Oliveira, J.; Costa, V. Partial replacement of EPDM by GTR in thermoplastic elastomers based on PP/EPDM: effects on morphology and mechanical properties. Journal of Applied Polymer Science 2014, 131(8), 40160. https://doi.org/10.1002/app.40160

Shi, M.; Zhang, D.; Zhu, J.; Shi, Y.; Sun, J.; Ji, Y. Morphology, crystallization, and thermal and mechanical properties of dynamic vulcanization EPDM/PP thermoplastic elastomer. Journal of Thermoplastic Composite Materials 2019, 32(7), 922-935. https://doi.org/10.1177/0892705718762615

Skyronka, V.; Majesté, J. C.; Carrot, C.; Chalamet, Y.; Janin, C.; Cantaloube, B.; Heuillet, P. Rheology as a powerful help for the characterization of the morphology of thermoplastic elastomers (TPE) based on PP and reclaimed EPDM rubber. Polymer 2024, 313, 127682. https://doi.org/10.1016/j.polymer.2024.127682

Saha, S.; Bhowmick, A. K. Smart thermoplastic elastomers with high extensibility from poly (vinylidene fluoride) and hydrogenated nitrile rubber: processing-structure-property relationship. Rubber Chemistry and Technology 2018, 91(1), 268-295. https://doi.org/10.5254/rct-18-82676

Kakhramanov, N. T.; Guliev, A. D.; Abdullin, M. I.; Allahverdieva, K. V. Thermal deformation properties of dynamically vulcanized thermoplastic elastomers based on random polypropylene and nitrile butadiene rubber. Inorganic Materials: Applied Research 2022, 13(2), 442-446. https://doi.org/10.1134/S2075113322020174

Bova, T.; Tran, C. D.; Balakshin, M. Y.; Chen, J.; Capanema, E. A.; Naskar, A. K. An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin-nitrile rubber. Green Chemistry 2016, 18(20), 5423-5437. https://doi.org/10.1039/C6GC01067A

Dai, S.; Li, S.; Xu, G.; Chen, C. Direct synthesis of polar functionalized polyethylene thermoplastic elastomer. Macromolecules 2020, 53(7), 2539-2546. https://doi.org/10.1021/acs.macromol.0c00083

Shaker, R.; Rodrigue, D. Rotomolding of thermoplastic elastomers based on low-density polyethylene and recycled natural rubber. Applied Sciences 2019, 9(24), 5430. https://doi.org/10.3390/app9245430

Helal, E.; Pottier, C.; David, E.; Fréchette, M.; Demarquette, N. R. Polyethylene/thermoplastic elastomer/Zinc Oxide nanocomposites for high voltage insulation applications: Dielectric, mechanical and rheological behavior. European Polymer Journal 2018, 100, 258-269. https://doi.org/10.1016/j.eurpolymj.2018.02.004

Panigrahi, H.; Sreenath, P. R.; Bhowmick, A. K.; Kumar, K. D. Unique compatibilized thermoplastic elastomer from polypropylene and epichlorohydrin rubber. Polymer 2019, 183, 121866. https://doi.org/10.1016/j.polymer.2019.121866

Benmesli, S.; Riahi, F. Dynamic mechanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplastic elastomer blend. Polymer Testing 2014, 36, 54-61. https://doi.org/10.1016/j.polymertesting.2014.03.016

Petdee, T.; Naemsai, T.; Homkhiew, C.; Pianhanuruk, E. Multiple response optimization of wood sawdust/natural rubber foam composites for stair tread covers. Industrial Crops and Products 2023, 204, 117312. https://doi.org/10.1016/j.indcrop.2023.117312

de Melo Sobrinho, E.D.; Ferreira, E.D.S.B.; da Silva, F.U.; Bezerra, E.B.; Wellen, R.M.R.; Araújo, E.M.; Luna, C.B.B. From waste to Styrene-Butadiene (SBR) reuse: Developing PP/SBR/SEP mixtures with carbon nanotubes for antistatic application. Polymers 2024, 16(17), 2542. https://doi.org/10.3390/polym16172542

Tasdemir, M.; Topsakaloglu, M.; Caneba, G.T. Dynamically vulcanized EPDM (Ethylene-Propylene-Diene Polymer)/PP (Polypropylene) polymer blend: Performance index (PI). Journal of Polymer Materials 2010, 27(4), 337.

Owen, E.; Kooi, O.; Ebhodaghe, O.; Hilary, I. Enhancing the dynamic mechanical properties of thermoplastic elastomers: A study on polypropylene/natural rubber blends. Current Chemistry Letters 2024, 13(3), 633-640. https://doi.org/10.5267/j.ccl.2023.11.002

Nakason, C.; Saiwari, S.; Kaesaman, A. Thermoplastic vulcanizates based on maleated natural rubber/polypropylene blends: effect of blend ratios on rheological, mechanical, and morphological properties. Polymer Engineering & Science 2006, 46(5), 594-600. https://doi.org/10.1002/pen.20498

Bendjaouhdou, C.; Bensaad, S. The effects of organoclay on the morphology and balance properties of an immiscible polypropylene/natural rubber blend. Journal of Thermoplastic Composite Materials 2013, 26, 1365-1378.

Kakroodi, A.R.; Rodrigue, D.; Utracki, L.A. Mechanical properties of recycled polypropylene/SBR rubber crumbs blends reinforced by birch wood flour. Polymers and Polymer Composites 2012, 20, 441-450. https://doi.org/10.1177/096739111202000503

Scagliusi, S.R.; Carvalho, E.C.L.; Lugão, A.B. Introduction to the study of mechanical properties of terpolymer PP/EPDM mixtures. Journal of Research Updates in Polymer Science 2021, 10, 1-9. https://doi.org/10.6000/1929-5995.2021.10.1

Khanam, P. N.; AlMaadeed, M. A. A. Processing and characterization of polyethylene-based composites. Advanced Manufacturing: Polymer & Composites Science 2015, 1(2), 63-79. https://doi.org/10.1179/2055035915Y.0000000002

Tanrattanakul, V.; Bunkaew, P. Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly (lactic acid) and natural rubber. Express Polymer Letters 2014, 8(6), 387-396. https://doi.org/10.3144/expresspolymlett.2014.43