Evaluating The Influence of Transition Metal Oxides on Anaerobic Digestion Performance

Main Article Content

Nina Anggita Wardani
Dwi Amalia
Muhammad Redo Ramadhan
Danang Jaya
Tunjung Wahyu Widayati
Eko Nursubiyantoro
Muhammad Athaya Khaliq
Rizki Amanda Putra
Qudrotunada Shofia Najla
Naufal Raffa Syailendra

Abstract

Palm oil, the world's most widely consumed edible oil, produces palm oil mill effluent (POME) as a byproduct, which poses significant environmental risks if untreated due to its high organic content and pollutants. Anaerobic digestion (AD) process converting organic waste into biogas which is a promising renewable and sustainable energy source especially for areas with abundant feedstock. Accelerators play a vital role in enhancing the performance of AD systems through various mechanisms. The high conductivity of TMOs facilitates efficient electron transfer, providing the fastest pathway for electron exchange between microorganisms. MnO₂ and Fe₂O₃ are abundantly available in Indonesia. This study compared MnO₂ and Fe₂O₃ to identify the most effective TMO for improving mesophilic batch AD performance in POME treatment. Results indicated that Fe₂O₃ was superior, increasing methane production volume by 21% and methane yield by 32% compared to AD without TMOs.

Article Details

Section
Research Articles

References

Choong, Y. Y.; Chou, K. W.; Norli, I. Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews 2018, 82, 2993-3006. http://doi.org/10.1016/j.rser.2017.10.036.

Badan Pusat Statistik, “Statistik Kelapa Sawit Indonesia 2022. 2023.

Mosunmola, A. G.; Olatunde, S. K. Palm Oil Mill Effluents (POME) and its Pollution Potentials: A biodegradable Prevalence. J Pollut Eff Cont, 2020, 8(5), 258. http://doi.org/10.35248/2375-4397.20.8.258.

David Bala, J.; Lalung, J.; Ismail, N. Biodegradation of palm oil mill effluent (POME) by bacterial. International Journal of Scientific and Research Publications 2014, 4(3). [Online]. Available: www.ijsrp.org

Azmi, N. A.; Yunos, K. F. M.; Zakaria, R. Application ofsandwich membrane for the treatment of palm oil mill effluent (POME) for water reuse. Procedia Engineering, 2012, 44, 1980-1981. http://doi.org/10.1016/j.proeng.2012.09.014.

Gamaralalage, D.; Sawai, O.; Nunoura, T. Degradation behavior of palm oil mill effluent in Fenton oxidation. J Hazard Mater. 2019, 364, 791-799. http://doi.org/10.1016/j.jhazmat.2018.07.023.

Parthasarathy, S.; Gomes, R. L.; Manickam, S. Process intensification of anaerobically digested palm oil mill effluent (AAD-POME) treatment using combined chitosan coagulation, hydrogen peroxide (H2O2) and Fenton’s oxidation. Clean Technol Environ Policy 2016, 18(1), 219-230. http://doi.org/10.1007/s10098-015-1009-7.

Lorestani, A. A. Z. BIOLOGICAL TREATMENT OF PALM OIL MILL EFFLUENT (POME) USING AN UP-FLOW ANAEROBIC SLUDGE FIXED FILM (UASFF) BIOREACTOR. 2006.

Zulfahmi, I.Kandi, N.R.; Huslina, F.; Rahmawati, L.; Muliari, M.; Sumon, A.K.; Rahman, M.M. Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environ Technol Innov. 2021, 21, 101260. http://doi.org/10.1016/j.eti.2020.101260.

Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 2018, 11(1), 107. http://doi.org/10.3390/en11010107.

Baniamerian, H.; Isfahani, G.P.; Tsapekos, P.; Alvarado-Norales, M.; Shanhrokhi, M.; Vossoughi, M.; Angelidaki, I. Application of nano-structured materials in anaerobic digestion: Current status and perspectives. Chemospher 2019, 229, 188-199. http://doi.org/10.1016/j.chemosphere.2019.04.193.

Yun, S.; Xing, T.; Han, F.; Shi, J.; Wang, Z.; Fan, Q.; Xu, H. Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresour Technol. 2021, 320. http://doi.org/10.1016/j.biortech.2020.124294.

Huang, Y.; Cai, B.; Dong, H.; Li, H.; Yuan, J.; Xu, H.; Wu, H.; Xu, Z.; Sun, D.; Dang, Y.; Holmes, E.D. Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin. Science of the Total Environment, 2022, 851. http://doi.org/10.1016/j.scitotenv.2022.158172.

Lee, J. Y.; Lee, S. H.; Park, H. D. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour Technol. 2016, 205, 205-212. http://doi.org/10.1016/j.biortech.2016.01.054.

Saelor, S.; Kongjan, P.; O-Thong, S. Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches,” in Energy Procedia, Elsevier Ltd, 2017, pp. 717-722. http://doi.org/10.1016/j.egypro.2017.10.206.

Suksong, W.; Promnuan, K.; Seengenyoung, J.; O-Thong, S. Anaerobic Co-Digestion of Palm Oil Mill Waste Residues with Sewage Sludge for Biogas Production in Energy Procedia, Elsevier Ltd, 2017, pp. 789-794. http://doi.org/10.1016/j.egypro.2017.10.068.

Bin Mohd Yusof, M. A.; Chan, Y. J.; Chong, C. H.; Chew, L. Effects of operational processes and equipment in palm oil mills on characteristics of raw Palm Oil Mill Effluent (POME): A comparative study of four mills. Cleaner Waste Systems 2023, 5. http://doi.org/10.1016/j.clwas.2023.100101.

Walker, M.; Zhang, Y.; Heaven, S.; Banks, C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol. 2009, 100(24), 6339-6346, http://doi.org/10.1016/j.biortech.2009.07.018.

American Public Health Association, “5220 C Chemical Oxygen Demand (COD) - Closed Reflux, Titrimetric Method,” in Standard Methods for The Examination of Water and Wastewater, 24th ed., 2023, pp. 546–547.

American Public Health Association, “5560 C Organic and Volatile Acids - Distillation Method,” in Standard Methods for The Examination of Water and Wastewater, 24th ed., 2023, pp. 593-594.

Cheng, Y. W.; Chong, C.C.; Lam, K.M.; Leong, H.W.; Chuah, F.L.; Yusup, S.; Setiabudi, D. H.; Tang, Y.; Lim W.J. Identification of microbial inhibitions and mitigation strategies towards cleaner bioconversions of palm oil mill effluent (POME): A review. Journal of Cleaner Production 2021, 280, 124346. http://doi.org/10.1016/j.jclepro.2020.124346.

Fang, C.; O-Thong, S.; Boe, K.; Angelidaki, I. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME). J Hazard Mater. 2011, 189(1-2), 229-234, http://doi.org/10.1016/j.jhazmat.2011.02.025.

Paul, S.; Parvez, S. S.; Goswami, A.; Banik, A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol, 2024, 262, 129954, Mar. 2024, http://doi.org/10.1016/j.ijbiomac.2024.129954.

D. and A. S. Deublein, Biogas from Waste and Renewable Resources, Second. Deggendorf: Wiley-VCH, 2011.

Wardani, N. A.; Budhijanto, W. Mendukung Pengembangan Biofuel Generasi Kedua: Peruraian Anaerob Termofilik Vinasse untuk Berselaras dengan Kapasitas Pabrik Bioetanol Berbahan Dasar Molasse Supporting Second Generation Biofuel Development: Thermophilic Anaerobic Digestion of Vinasse for Harmonizing with Molasses-Based Bioethanol Plant Capacity. 2023.

Wardani, W.; Afiqah, N. A.; Azis, N.; Budhijanto, M. M. Comparison of Biogas Productivity in Thermophilic and Mesophilic Anaerobic Digestion of Bioethanol Liquid Waste Comparison of Biogas Productivity in Thermophilic and Mesophilic Anaerobic Digestion of Bioethanol Liquid Waste. Earth and Environmental Science, 2020, http://doi.org/10.1088/1755-1315/448/1/012002.

Tian, T.; Qiao, S.; Yu, C.; Zhou, J. Effects of nano-sized MnO2 on methanogenic propionate and butyrate degradation in anaerobic digestion. J Hazard Mater. 2019, 364, 11-18. http://doi.org/10.1016/j.jhazmat.2018.09.081.

Ünşar, E. K.; Perendeci, N. A. What kind of effects do Fe2O3 and Al2O3 nanoparticles have on anaerobic digestion, inhibition or enhancement?. Chemosphere. 2018, 211, 726-735. http://doi.org/10.1016/j.chemosphere.2018.08.014.

Chaiprapat, S.; Laklam, T. Enhancing digestion efficiency of POME in anaerobic sequencing batch reactor with ozonation pretreatment and cycle time reduction. Bioresour Technol 2011, 102(5), 4061-4068. http://doi.org/10.1016/j.biortech.2010.12.033.

Ahmed, Y.; Yaakob, Z.; Akhtar, P.; Sopian, K. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME), 2015, Elsevier Ltd. http://doi.org/10.1016/j.rser.2014.10.073.

Abdurahman, N. H.; Rosli, Y. M.; Azhari, N. H. Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination 2011, 266(1-3), 208-212. http://doi.org/10.1016/j.desal.2010.08.028.