Sterculia quadrifida R.Br: Utilization, Bioactive Compounds, and the Potential as a New Source of Seed Oil - A Comprehensive Review

Main Article Content

Mery Rambu B. Djoru
Samatcha Krungkaew
Malinee Sriariyanun
Yu-Shen Cheng
Godlief F. Neonufa
Patchanee Yasurin

Abstract

Sterculia quadrifida R.Br., a plant native to East Nusa Tenggara, Indonesia, and northern Australia, has gained increasing attention due to the diverse traditional uses of bark, roots, leaves, and seeds. Recent studies have shown that this plant is rich in bioactive compounds, including antioxidants, anticancer, antimicrobial, and antifungal agents present in all parts of the plant. This review aims to discuss the utilization of this plant by local communities and summarize various research findings on its bioactive compounds and their health benefits. Additionally, the review focuses on the potential of the seeds as a valuable new source of plant oil, as studies on Sterculia quadrifida R.Br. seeds have revealed high lipid content, diverse fatty acids including linoleic and palmitic acids, sterculic acid, triterpenoid, and β-sitosterol, which contribute to their antioxidant, anticancer, antimicrobial, and antifungal properties. This review provides opportunities for further research on the extraction of Sterculia quadrifida R.Br. seed oil and its applications in the food, pharmaceutical, and industrial sectors.

Article Details

Section
Academic Articles

References

Dar, R. A.; Shahnawaz, M.; Ahanger, M. A.; Majid, I. ul. Exploring the Diverse Bioactive Compounds from Medicinal Plants: A Review. J. Phytopharm., 2023, 12(3), 189–195. https://doi.org/10.31254/phyto.2023.12307

Kristoferson Lulan, T. Y.; Fatmawati, S.; Santoso, M.; Ersam, T. Antioxidant Capacity of Some Selected Medicinal Plants in East Nusa Tenggara, Indonesia: The Potential of Sterculia Quadrifida R.Br. Free Radicals Antioxidants, 2018, 8(2), 96–101. https://doi.org/10.5530/fra.2018.2.15

Rollando, R.; Warsito, W.; Masruri, M.; Widodo, W. Potential Therapeutic Use of Sterculia Quadrifida R.Br and Sterculia Foetida Linn.: Review. Asian J. Plant Sci., 2020, 19(4), 325–334. https://doi.org/10.3923/ajps.2020.325.334

Rollando, R.; Alfanaar, R. Cytotoxic Effect of 2,3-Dihydro-6-Hydroxy-2-Methylenenaphtho[1,2-b] Furan-4,5-Dione Compound from the Bark of Faloak (Sterculia Quadrifida R.Br) in Breast Cancer Cells T47D. Pharmaciana, 2017, 7(2), 289. https://doi.org/10.12928/pharmaciana.v7i2.6699

Siswadi & Saragih, G. S. Kandungan Flavonoid Total Kulit Batang Beberapa Famili Sterculiaceae; Faloak (Sterculia Quadrifida R. Br.) Pterigota (Pterygota Alata (Roxb.) R. Br.) Dan Nitas (Sterculia Foetida L.). In Prosiding Seminar Nasional POKJANAS TOI; 2017; pp 112–118.

Rollando, R.; Monica, E.; Afthoni, M. H.; Warsito, W.; Masruri, M.; Widodo, N. A Phenylpropanoid Compound from the Seeds of Sterculia Quadrifida and Its Cytotoxic Activity. Trop. J. Nat. Prod. Res., 2023, 7(6), 3203–3208. https://doi.org/10.26538/tjnpr/v7i6.21

Dillak, H. I.; Kristiani, E. B. E.; Kasmiyati, S. Secondary Metabolites and Antioxidant Activity of Ethanolic Extract of Faloak (Sterculia Quadrifida). Biosaintifika, 2019, 11(3), 296–303. https://doi.org/10.15294/biosaintifika.v11i3.20736

Amin, A.; Wunas, J.; Anin, Y. M. UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL KLIKA FALOAK (Sterculia Quadrifida R.Br) DENGAN METODE DPPH (2,2-Diphenyl-1-Picrylhydrazyl). J. Fitofarmaka Indones., 2016, 2(2), 111–114. https://doi.org/10.33096/jffi.v2i2.180

Rollando, R.; Prilianti, K. R. Sterculia Quadrifida R.Br Ethyl Acetate Fraction Increases Cisplatin Cytotoxicity on T47D Breast Cancer Cells. Int. J. Pharm. Res., 2018, 10(3), 204–212. https://doi.org/10.31838/ijpr/2018.10.03.072

Siswadi, S.; Saragih, G. S.; Rianawati, H. Potential Distributions and Utilization of Faloak ( Sterculia Quadrifida R. Br 1844 ) on Timor Island , East Nusa Tenggara Potential Distributions and Utilization of Faloak. 2022, No. March 2020.

Siswadi, S.; Saragih, G. S. Phytochemical Analysis of Bioactive Compounds in Ethanolic Extract of Sterculia Quadrifida R.Br. AIP Conf. Proc., 2021, 2353. https://doi.org/10.1063/5.0053057

Faramayuda, F.; Julia Ratnawati; Akhirul Kahfi Syam. KARAKTERISASI FARMAKOGNOSI DAUN FALOAK (Sterculia Quadrifida R.Br). Med. Sains J. Ilm. Kefarmasian, 2022, 7(2), 173–180. https://doi.org/10.37874/ms.v7i2.322

Soeharto, F.; Tenda, P. E. Soeharto, F., & Tenda, P. E. (2018). Antioxidant Activity of Instant Faloak (Sterculia Quadrifida R. Br.) from Kupang-East Nusa Tenggara by the Use DPPH (1, 1-Difenyl-2-Picrylhydrazyl) Free Radical Method. Proceeding 1st. International Conference Health P. In Proceeding 1st. International Conference Health Polytechnic of Kupang; 2018; pp 454–462.

Darojati, U. A.; Murwanti, R.; Hertiani, T. Sterqulia Quadrifida R.Br: A Comprehensive Review of Ethnobotany, Phytochemistry, Pharmacology and Toxicology. JPSCR J. Pharm. Sci. Clin. Res., 2022, 7(1), 1. https://doi.org/10.20961/jpscr.v7i1.52244

Gardens, R. B. M. Sterculia quadrifida R.Br. https://bie.ala.org.au/species/https://id.biodiversity.org.au/node/apni/2914772#overview. (accessed Jul 27, 2024).

Ranta, F.; Nawawi, D.; Pribadi, E.; Syafii, W. Aktivitas Anticendawan Zat Ekstraktif Faloak (Sterculia Comosa Wallich). J. Ilmu dan Teknol. Kayu Trop., 2012, 10(1), 60.

Siswadi; Saragih, G. S.; Rianawati, H. Potential Distributions and Utilization of Faloak (Sterculia Quadrifida R.Br 1844) on Timor Island, East Nusa Tenggara. Int. Conf. For. Biodivers., 2013, No. July 2013, 165–171.

Cheikhyoussef, A.; Shapi, M.; Matengu, K.; Mu Ashekele, H. Ethnobotanical Study of Indigenous Knowledge on Medicinal Plant Use by Traditional Healers in Oshikoto Region, Namibia. J. Ethnobiol. Ethnomed., 2011, 7(1), 10. https://doi.org/10.1186/1746-4269-7-10

Siswadi, S.; Rianawati, H.; Saragih, G. Utilization of Faloak Bark (Sterculia Quadrifida R. Br.) as Herbal Medicinal Raw Material on Timor Island. In Proceedings of the Savana Biodiversity of Nusa Tenggara; 2016. https://doi.org/10.5281/zenodo.3353763

Rollando, R.; Engracia, M.; Monica, E.; Siswadi, S. Immunomodulatory Activity Test of Syrup Dosage Form of Combination Phyllantus Niruri Linn. And Sterculia Quadrifida R.Br. Extract. Int. J. Res. Pharm. Sci., 2020, 11(1), 191–199. https://doi.org/10.26452/ijrps.v11i1.1806

Akter, K.; Barnes, E. C.; Brophy, J. J.; Harrington, D.; Community Elders, Y.; Vemulpad, S. R.; Jamie, J. F. Phytochemical Profile and Antibacterial and Antioxidant Activities of Medicinal Plants Used by Aboriginal People of New South Wales, Australia. Evidence-based Complement. Altern. Med., 2016, 2016. https://doi.org/10.1155/2016/4683059

Kale, A.; Gawande, S.; Kotwal, S. Cancer Phytotherapeutics: Role for Flavonoids at the Cellular Level. Phyther. Res., 2008, 22 (5), 567–577. https://doi.org/10.1002/ptr.2283

Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 2017, 6(4). https://doi.org/10.3390/plants6040042

GRACE SEREPINA SARAGIH; SISWADI SISWADI. Antioxidant Activity of Plant Parts Extracts From Sterculia Quadrifida R. Br. Asian J. Pharm. Clin. Res., 2019, 12(7), 143–148. https://doi.org/10.22159/ajpcr.2019.v12i7.33261

Ben Ahmed, Z.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Heyden, Y. Seasonal, Gender and Regional Variations in Total Phenolic, Flavonoid, and Condensed Tannins Contents and in Antioxidant Properties from Pistacia Atlantica Ssp. Leaves. Pharm. Biol., 2017, 55. https://doi.org/10.1080/13880209.2017.1291690

Santoso, B.; Anggraeni, R.; Aulia, P.; Suhendi, A.; Hanwar, D.; Haryoto, H.; Utami, W. Aktivitas Antioksidan Ekstrak Etanol Dan Fraksi Kulit Batang Kepel (Stelechocarpus Burahol Blume Hook & Thomson) Menggunakan Metode DPPH Dan CUPRAC; 2017.

Nardini, M.; Garaguso, I. Characterization of Bioactive Compounds and Antioxidant Activity of Fruit Beers. Food Chem., 2020, 305, 125437. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125437

Bustanussalam; Hapsari, Y.; Rachman, F.; Septiana, E.; Simanjuntak, P.; Heliyawati, L.; Noviany, I. Antidiabetic Activity of Cinnamon Bark Extract (Cinnamomum Burmannii (Nees & T.Nees) Blume). AIP Conf. Proc., 2023, 2606(1), 20009. https://doi.org/10.1063/5.0118405

Nazarudin, M. F.; Alias, N. H.; Sharifuddin, N.; Zainal Abidin, A.; Ahmad, M. I.; Mazli, N. A. I. N.; Natrah, I.; Aliyu-Paiko, M.; Isha, A. Preliminary Evaluation of the Biochemical and Antioxidant Properties of Seaweed Species Predominantly Distributed in Peninsular Malaysia. J. Fish. Environ., 2021, 45(2 SE-Articles), 119–133.

Rollando, R.; Siswadi, S. Penelusuran Potensi Aktivitas Sitotoksik Fraksi Kulit Batang Tumbuhan Faloak (Sterculia Quadrifida R. Br). J. Ilmu Farm. dan Farm. Klin., 2016, 13(1), 27–32.

Rollando, R.; Alfanaar, R. Cytotoxic Effect of 2,3-Dihydro-6-Hydroxy 2-Methylenenaphtho[1,2-b] Furan-4,5-Dione Compound from the Bark of Faloak (Sterculia Quadrifida R.Br) in Breast Cancer Cells T47D. Pharmaciana, 2017, 7, 289–294. https://doi.org/10.12928/pharmaciana.v7i2.6699

Rollando, R.; Afthoni, M.; Monica, E. In Vitro Cytotoxic Potential of Sterculia Quadrifida Leaf Extract Against Human Breast Cancer Cell Lines. Trop. J. Nat. Prod. Res., 2022, 6, 1228–1232. https://doi.org/10.26538/tjnpr/v6i8.12

Susanto, F. . Potential Fraction of Antibacterial and Anti-Radical Activity of Faloak Bark (Sterculia Quadrifida R.Br).; 2019.

Özen, H.; Başhan, P. D. M.; Toker, Z.; Keskin, C. 3-Hydroxy Fatty Acids from the Flowers of Hypericum Lysimachioides Var. Lysimachioides. Turkish J. Chem., 2004, 28, 223–226.

Djoru, M. R.; Hetharia, G.; Adi, I.; Neonufa, G.; Tamonob, A.; Purwadi, R. Characterization of Antioxidant Activity Forest Honey Enriched with Red Ginger Extract (Zingiber Officinale Var. Rubrum); 2024. https://doi.org/10.1063/5.0193707

Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A. G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2022.

Dauqan, E.; Halimah; Abdullah, A.; Mohd-Kasim, Z. Effect of Different Vegetable Oils (Red Palm Olein, Palm Olein, Corn Oil and Coconut Oil) on Lipid Profile in Rat. Food Nutr. Sci., 2011, 2, 253–258. https://doi.org/10.4236/fns.2011.24036

Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci., 2021, 22, 4945. https://doi.org/10.3390/ijms22094945

Do Nascimento, L. D.; de Moraes, A. A. B.; da Costa, K. S.; Galúcio, J. M. P.; Taube, P. S.; Costa, C. M. L.; Cruz, J. N.; Andrade, E. H. de A.; de Faria, L. J. G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules, 2020, 10 (7), 1–37. https://doi.org/10.3390/biom10070988

Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical Screening, Polyphenols, Flavonoids and Tannin Content, Antioxidant Activities and FTIR Characterization of Marrubium Vulgare L. from 2 Different Localities of Northeast of Morocco. Heliyon, 2020, 6 (11), e05609. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05609

GRACE SEREPINA SARAGIH; SISWADI SISWADI. Antioxidant Activity of Plant Parts Extracts From Sterculia Quadrifida R. Br. Asian J. Pharm. Clin. Res., 2019, No. July 2019, 143–148. https://doi.org/10.22159/ajpcr.2019.v12i7.33261

Hematpoor, A.; Paydar, M.; Liew, S. Y.; Sivasothy, Y.; Mohebali, N.; Looi, C. Y.; Wong, W. F.; Azirun, M. S.; Awang, K. Phenylpropanoids Isolated from Piper Sarmentosum Roxb. Induce Apoptosis in Breast Cancer Cells through Reactive Oxygen Species and Mitochondrial-Dependent Pathways. Chem. Biol. Interact., 2018, 279, 210–218. https://doi.org/10.1016/j.cbi.2017.11.014

Reid, K. A.; Jäger, A. K.; Light, M. E.; Mulholland, D. A.; Staden, J. Van. Phytochemical and Pharmacological Screening of Sterculiaceae Species and Isolation of Antibacterial Compounds. J. Ethnopharmacol., 2005, 97(2), 285–291. https://doi.org/https://doi.org/10.1016/j.jep.2004.11.010

Xia, P.; Shuang, S.; Feng, Z.; Zhang, P. Chemical Constituents from Leaves of Sterculia Foetida. Zhongguo Zhong Yao Za Zhi, 2009, 34, 2604–2606.

Tian, F.; Woo, S. Y.; Lee, S. Y.; Park, S. B.; Zheng, Y.; Chun, H. S. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus Flavus. Antibiotics, 2022, 11(12). https://doi.org/10.3390/antibiotics11121727

Mir, S. A.; Dar, A.; Hamid, L.; Nisar, N.; Malik, J. A.; Ali, T.; Bader, G. N. Flavonoids as Promising Molecules in the Cancer Therapy: An Insight. Curr. Res. Pharmacol. Drug Discov., 2024, 6 (November 2023), 100167. https://doi.org/10.1016/j.crphar.2023.100167

Galli, C. L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Aloe-Emodin, a Hydroxyanthracene Derivative, Is Not Genotoxic in an in Vivo Comet Test. Regul. Toxicol. Pharmacol., 2021, 124, 104967. https://doi.org/https://doi.org/10.1016/j.yrtph.2021.104967

Loschi, F.; Faggian, M.; Sut, S.; Ferrarese, I.; Maccari, E.; Peron, G.; Dall’Acqua, S. Development of an LC–DAD–MS-Based Method for the Analysis of Hydroxyanthracene Derivatives in Food Supplements and Plant Materials. Molecules. 2022. https://doi.org/10.3390/molecules27061932

Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep., 2021, 10(3), 232–242. https://doi.org/10.1007/s13668-021-00363-3

Shintawati; Widodo, Y. R.; Ermaya, D. Yield and Quality Improvement of Candlenut Oil by Microwave Assisted Extraction (MAE) Methods. IOP Conf. Ser. Earth Environ. Sci., 2021, 1012 (1). https://doi.org/10.1088/1755-1315/1012/1/012024

Trustinah; Kasno, A. Karakterisasi Kandungan Asam Lemak Beberapa Genotipe Kacang Tanah. Penelit. Pertan. Tanam. Pangan, 2014, 31(3), 145–151.

Aquino-Bolaños, E. N.; Mapel-Velazco, L.; Martín-del-Campo, S. T.; Chávez-Servia, J. L.; Martínez, A. J.; Verdalet-Guzmán, I. Fatty Acids Profile of Oil from Nine Varieties of Macadamia Nut. Int. J. Food Prop., 2017, 20(6), 1262–1269. https://doi.org/10.1080/10942912.2016.1206125

Özcan, M. M.; Matthäus, B.; Aljuhaimi, F.; Mohamed Ahmed, I. A.; Ghafoor, K.; Babiker, E. E.; Osman, M. A.; Gassem, M. A.; Alqah, H. A. S. Effect of Almond Genotypes on Fatty Acid Composition, Tocopherols and Mineral Contents and Bioactive Properties of Sweet Almond (Prunus Amygdalus Batsch Spp. Dulce) Kernel and Oils. J. Food Sci. Technol., 2020, 57(11), 4182–4192. https://doi.org/10.1007/s13197-020-04456-9

Sheela, D.; Uthayakumari, F. GC-MS Analysis of Bioactive Constituents from Coastal Sand Dune Taxon-Sesuvium Portulacastrum. Biosci. Discov., 2013, 4, 47–53.

Krishnaveni, M.; Dhanalakshmi, R.; Nandhini, N. GC-MS Analysis of Phytochemicals, Fatty Acid Profile, Antimicrobial Activity of Gossypium Seeds. Int. J. Pharm. Sci. Rev. Res., 2014, 27(1), 273–276.

Rahayu, A. A. D.; Prihantini, A. I.; Krisnawati; Nugraheni, Y. M. M. A. Chemical Components of Different Parts of Strychnos Ligustrina, a Medicinal Plant from Indonesia. IOP Conf. Ser. Earth Environ. Sci., 2022, 959(1). https://doi.org/10.1088/1755-1315/959/1/012061

Joshua, O.; Omowanle, J.; Ayo, R. J.; Habila, J.; Ilekhaize, J.; Adegbe, E. A. Physico-Chemical and Gc-Ms Analysis of Some Selected Plant Seed Oils; Castor, Neem and Rubber Seed Oils. FUW Trends Sci. Technol. Journal, www.ftstjournal.com e-ISSN, 2018, 3(2), 644–651.

De Meester, F.; Watson, R. R. Handbook of Lipids in Human Function: Fatty Acids; 2015.

Kumaravel, S.; Kalaiselvi, P. Determination of Bioactive Components of Plectranthus Amboinicus Lour by GC-MS Analysis. M. Uma; 2011.

Msanne, J.; Kim, H.; Cahoon1, E. B. Biotechnology Tools and Applications for Development of Oilseed Crops with Healthy Vegetable Oils. 2020.

García, V. L. The Omega 7 as a Health Strategy for the Skin and Mucous Membranes. EC Nutr., 2019, 14(6), 484–489.

Zaloga, G. P. Narrative Review of N-3 Polyunsaturated Fatty Acid Supplementation upon Immune Functions, Resolution Molecules and Lipid Peroxidation. Nutrients. 2021. https://doi.org/10.3390/nu13020662

Pretorius, C. J.; Zeiss, D. R.; Dubery, I. A. The Presence of Oxygenated Lipids in Plant Defense in Response to Biotic Stress: A Metabolomics Appraisal. Plant Signal. Behav., 2021, 16(12). https://doi.org/10.1080/15592324.2021.1989215

Delgado, G. E.; Krämer, B. K.; Lorkowski, S.; März, W.; von Schacky, C.; Kleber, M. E. Individual Omega-9 Monounsaturated Fatty Acids and Mortality-The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol., 2017, 11(1), 126-135.e5. https://doi.org/10.1016/j.jacl.2016.10.015

Chowdhury, R.; Steur, M.; Patel, P. S.; Franco, O. H. Chapter 10 - Individual Fatty Acids in Cardiometabolic Disease; Watson, R. R., De Meester, F. B. T.-H. of L. in H. F., Eds.; AOCS Press, 2016; pp 207–318. https://doi.org/https://doi.org/10.1016/B978-1-63067-036-8.00010-X