Enhanced Thermal Efficiency of Solar Air Heaters Using Porous Material: An Experimental Approach
Main Article Content
Abstract
This study presents a detailed experimental investigation into the energy and exergy efficiencies of a double-pass solar air heater (SAH) augmented with porous materials. The primary objective was to assess the impact of integrating steel-based hollow square porous elements, featuring porosities of 0.98 and 0.99, on the thermodynamic performance of the SAH under tropical environmental conditions. A prototype SAH with dimensions of 0.75 m × 1.85 m × 0.25 m was developed and evaluated based on empirical data encompassing solar irradiance, air inlet and outlet temperatures, and mass flow rate. The results demonstrate a significant improvement in both energy and exergy efficiencies with the incorporation of porous materials. Notably, the configuration with 0.98 porosity yielded superior results, with energy efficiencies ranging from 6.19% to 9.01% and a peak exergy efficiency of 0.26%. In comparison, the reference system without porous material exhibited lower average energy and exergy efficiencies of 4.98% and 0.11%, respectively. Furthermore, the porous media contributed to enhanced thermal inertia, leading to improved heat retention and a more stable outlet temperature profile under fluctuating solar irradiance. These findings underscore the thermodynamic advantages of utilizing high-porosity materials within a double-pass SAH, emphasizing their potential for efficient thermal energy conversion in agricultural and industrial drying applications, particularly in regions with high solar potential.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Azis, A.; Waris, A.; Salim, I.; Syafiuddin, M.; Setiawan, E.; Rezkiana, N.; Azizah, A.; Alamsyah, M. Testing the Heat Distribution of Flat Plate Type Solar Collectors for LPG Solar Hybrid Dryers at P4S Bukit Melintang. BIO Web Conf. 2024. https://doi.org/10.1051/bioconf/20249603004
Senthil, R.; Vijayan, G.; Phadtare, G.; Gupta, B. Performance Enhancements of Solar Dryers Using Integrated Thermal Energy Storage: A Review. In Proceedings 2021, 355–362. https://doi.org/10.1007/978-981-15-9678-0_31
Panwar, N.; Kaushik, S.; Kothari, S. State of the Art on Solar Drying Technology: A Review. Int. J. Renew. Energy Technol. 2012, 3, 107. https://doi.org/10.1504/IJRET.2012.045622
Masana, E.; Jordi, C.; Ribas, I. Effective Temperature Scale and Bolometric Corrections from 2MASS Photometry. arXiv 2006. https://doi.org/10.1051/0004-6361:20054021
Ji, F.; Ji, F.; Dai, X. A New Solution Method for Black-Body Radiation Inversion and the Solar Area-Temperature Distribution. Sci. China Phys. Mech. Astron. 2011, 54(11), 2097–2102. https://doi.org/10.1007/S11433-011-4514-7
Cugliandolo, L. F. The Effective Temperature. J. Phys. A 2011, 44(48), 483001. https://doi.org/10.1088/1751-8113/44/48/483001
Nimnuan, P.; Janjai, S. An Approach for Estimating Average Daily Global Solar Radiation from Cloud Cover in Thailand. Procedia Eng. 2012, 32, 399–406. https://doi.org/10.1016/J.PROENG.2012.01.1285
Waewsak, J.; Chancham, C.; Mani, M.; Gagnon, Y. Estimation of Monthly Mean Daily Global Solar Radiation over Bangkok, Thailand Using Artificial Neural Networks. Energy Procedia 2014, 57, 1160–1168. https://doi.org/10.1016/J.EGYPRO.2014.10.103
Ismail, A.; Hamid, A.; Ibrahim, A.; Jarimi, H.; Sopian, K. Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock. Energies 2022. https://doi.org/10.3390/en15030905
Srivastava, A.; Shukla, S.; Singh, U. Thermal Performance Analysis of Flat Plate Solar Collector and Solar Dryer of Indirect Solar Drying System. J. Therm. Eng. 2016, 2, 21–31.
Jadallah, A.; Alsaadi, M.; Hussien, S. The Hybrid Photovoltaic-Thermal Double-Pass Solar System for Drying Applications. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 765. https://doi.org/10.1088/1757-899X/765/1/012024
Kumar, D.; Premachandran, B. Investigation of the Effect of Porous Material on the Flow and Temperature Patterns of a Passive Solar Air Heater. J. Sol. Energy Eng. 2020, 142. https://doi.org/10.1115/1.4046632
Nima, F. J.; Steffan, T. L. Performance Improvement of a Solar Air Heater by Covering the Absorber Plate with Porous Material. Energy 2020, 190, 116437
Singh, S.; Dhiman, P. Thermal Performance of Double Pass Packed Bed Solar Air Heaters—A Comprehensive Review. Renewable Sustainable Energy Rev. 2016, 53, 1010–1031.
Dissa, A. O.; Ouoba, S.; Bathiebo, D.; Koulidiati, J. A Study of a Solar Air Collector with a Mixed “Porous” and “Non-Porous” Composite Absorber. Sol. Energy 2016, 129, 156–174.
Murali, G.; Reddy, K. R. K.; Kumar, M. T. S.; Manikanta, J. S.; Reddy, V. N. K. Performance of Solar Aluminium Can Air Heater Using Sensible Heat Storage. Mater. Today Proc. 2020, 21(1), 169–174.
Vijayan, S.; Arjunan, T. V.; Kumar, A.; Matheswaran, M. M. Experimental and Thermal Performance Investigations on Sensible Storage Based Solar Air Heater. J. Energy Storage 2020, 31, 101620.
Bayrak, F.; Oztop, H. F.; Hepbasli, A. Energy and Exergy Analyses of Porous Baffles Inserted Solar Heaters for Building Applications. Energy Build. 2013, 57, 338–345.
Ahmad, O. K.; Mohammed, Z. A. Influence of Porous Media on the Performance of Hybrid PV/Thermal Collector. Renewable Energy 2017, 112, 378–387.
Hao, W.; Lu, Y.; Lai, Y.; Yu, H.; Lyu, M. Research on Operation Strategy and Performance Prediction of Flat Plate Solar Collector with Dual-Function for Drying Agricultural Products. Renewable Energy 2018, 127, 685–696.
Hwang, Y.; Park, S. A Theoretical and Experimental Study for the Design of Solar Air Heaters Using Porous Material. Trans. Korean Soc. Mech. Eng. B 1996, 20, 336–345. https://doi.org/10.22634/KSME-B.1996.20.1.336
Hameed, A.; Mohammed, A.; Hussain, E. Experimental Study of the Effect of Porous Media on the Performance of Single-Pass Solar Air Heater. J. Adv. Res. Fluid Mech. Therm. Sci. 2024. https://doi.org/10.37934/arfmts.121.1.2738
Jalil, J.; Ali, S. Thermal Investigations of Double Pass Solar Air Heater with Two Types of Porous Media of Different Thermal Conductivity. Eng. Technol. J. 2021. https://doi.org/10.30684/ETJ.V39I1A.1704
Abo-Elfadl, S.; Yousef, M.; El-Dosoky, M.; Hassan, H. Energy, Exergy, and Economic Analysis of Tubular Solar Air Heater with Porous Material: An Experimental Study. Appl. Therm. Eng. 2021, 196, 117294. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117294
Salih, M.; Alomar, O.; Yassien, H. Impacts of Adding Porous Media on Performance of Double-Pass Solar Air Heater under Natural and Forced Air Circulation Processes. Int. J. Mech. Sci. 2021, 210, 106738. https://doi.org/10.1016/J.IJMECSCI.2021.106738