Enhanced Thermal Efficiency of Solar Air Heaters Using Porous Material: An Experimental Approach

Main Article Content

Eakpoom Boonthum
Prapanphong Somsila
Sorawit Sonsaree
Umphisak Teeboonma

Abstract

This study presents a detailed experimental investigation into the energy and exergy efficiencies of a double-pass solar air heater (SAH) augmented with porous materials. The primary objective was to assess the impact of integrating steel-based hollow square porous elements, featuring porosities of 0.98 and 0.99, on the thermodynamic performance of the SAH under tropical environmental conditions. A prototype SAH with dimensions of 0.75 m × 1.85 m × 0.25 m was developed and evaluated based on empirical data encompassing solar irradiance, air inlet and outlet temperatures, and mass flow rate. The results demonstrate a significant improvement in both energy and exergy efficiencies with the incorporation of porous materials. Notably, the configuration with 0.98 porosity yielded superior results, with energy efficiencies ranging from 6.19% to 9.01% and a peak exergy efficiency of 0.26%. In comparison, the reference system without porous material exhibited lower average energy and exergy efficiencies of 4.98% and 0.11%, respectively. Furthermore, the porous media contributed to enhanced thermal inertia, leading to improved heat retention and a more stable outlet temperature profile under fluctuating solar irradiance. These findings underscore the thermodynamic advantages of utilizing high-porosity materials within a double-pass SAH, emphasizing their potential for efficient thermal energy conversion in agricultural and industrial drying applications, particularly in regions with high solar potential.

Article Details

Section
Research Articles

References

Azis, A.; Waris, A.; Salim, I.; Syafiuddin, M.; Setiawan, E.; Rezkiana, N.; Azizah, A.; Alamsyah, M. Testing the Heat Distribution of Flat Plate Type Solar Collectors for LPG Solar Hybrid Dryers at P4S Bukit Melintang. BIO Web Conf. 2024. https://doi.org/10.1051/bioconf/20249603004

Senthil, R.; Vijayan, G.; Phadtare, G.; Gupta, B. Performance Enhancements of Solar Dryers Using Integrated Thermal Energy Storage: A Review. In Proceedings 2021, 355–362. https://doi.org/10.1007/978-981-15-9678-0_31

Panwar, N.; Kaushik, S.; Kothari, S. State of the Art on Solar Drying Technology: A Review. Int. J. Renew. Energy Technol. 2012, 3, 107. https://doi.org/10.1504/IJRET.2012.045622

Masana, E.; Jordi, C.; Ribas, I. Effective Temperature Scale and Bolometric Corrections from 2MASS Photometry. arXiv 2006. https://doi.org/10.1051/0004-6361:20054021

Ji, F.; Ji, F.; Dai, X. A New Solution Method for Black-Body Radiation Inversion and the Solar Area-Temperature Distribution. Sci. China Phys. Mech. Astron. 2011, 54(11), 2097–2102. https://doi.org/10.1007/S11433-011-4514-7

Cugliandolo, L. F. The Effective Temperature. J. Phys. A 2011, 44(48), 483001. https://doi.org/10.1088/1751-8113/44/48/483001

Nimnuan, P.; Janjai, S. An Approach for Estimating Average Daily Global Solar Radiation from Cloud Cover in Thailand. Procedia Eng. 2012, 32, 399–406. https://doi.org/10.1016/J.PROENG.2012.01.1285

Waewsak, J.; Chancham, C.; Mani, M.; Gagnon, Y. Estimation of Monthly Mean Daily Global Solar Radiation over Bangkok, Thailand Using Artificial Neural Networks. Energy Procedia 2014, 57, 1160–1168. https://doi.org/10.1016/J.EGYPRO.2014.10.103

Ismail, A.; Hamid, A.; Ibrahim, A.; Jarimi, H.; Sopian, K. Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock. Energies 2022. https://doi.org/10.3390/en15030905

Srivastava, A.; Shukla, S.; Singh, U. Thermal Performance Analysis of Flat Plate Solar Collector and Solar Dryer of Indirect Solar Drying System. J. Therm. Eng. 2016, 2, 21–31.

Jadallah, A.; Alsaadi, M.; Hussien, S. The Hybrid Photovoltaic-Thermal Double-Pass Solar System for Drying Applications. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 765. https://doi.org/10.1088/1757-899X/765/1/012024

Kumar, D.; Premachandran, B. Investigation of the Effect of Porous Material on the Flow and Temperature Patterns of a Passive Solar Air Heater. J. Sol. Energy Eng. 2020, 142. https://doi.org/10.1115/1.4046632

Nima, F. J.; Steffan, T. L. Performance Improvement of a Solar Air Heater by Covering the Absorber Plate with Porous Material. Energy 2020, 190, 116437

Singh, S.; Dhiman, P. Thermal Performance of Double Pass Packed Bed Solar Air Heaters—A Comprehensive Review. Renewable Sustainable Energy Rev. 2016, 53, 1010–1031.

Dissa, A. O.; Ouoba, S.; Bathiebo, D.; Koulidiati, J. A Study of a Solar Air Collector with a Mixed “Porous” and “Non-Porous” Composite Absorber. Sol. Energy 2016, 129, 156–174.

Murali, G.; Reddy, K. R. K.; Kumar, M. T. S.; Manikanta, J. S.; Reddy, V. N. K. Performance of Solar Aluminium Can Air Heater Using Sensible Heat Storage. Mater. Today Proc. 2020, 21(1), 169–174.

Vijayan, S.; Arjunan, T. V.; Kumar, A.; Matheswaran, M. M. Experimental and Thermal Performance Investigations on Sensible Storage Based Solar Air Heater. J. Energy Storage 2020, 31, 101620.

Bayrak, F.; Oztop, H. F.; Hepbasli, A. Energy and Exergy Analyses of Porous Baffles Inserted Solar Heaters for Building Applications. Energy Build. 2013, 57, 338–345.

Ahmad, O. K.; Mohammed, Z. A. Influence of Porous Media on the Performance of Hybrid PV/Thermal Collector. Renewable Energy 2017, 112, 378–387.

Hao, W.; Lu, Y.; Lai, Y.; Yu, H.; Lyu, M. Research on Operation Strategy and Performance Prediction of Flat Plate Solar Collector with Dual-Function for Drying Agricultural Products. Renewable Energy 2018, 127, 685–696.

Hwang, Y.; Park, S. A Theoretical and Experimental Study for the Design of Solar Air Heaters Using Porous Material. Trans. Korean Soc. Mech. Eng. B 1996, 20, 336–345. https://doi.org/10.22634/KSME-B.1996.20.1.336

Hameed, A.; Mohammed, A.; Hussain, E. Experimental Study of the Effect of Porous Media on the Performance of Single-Pass Solar Air Heater. J. Adv. Res. Fluid Mech. Therm. Sci. 2024. https://doi.org/10.37934/arfmts.121.1.2738

Jalil, J.; Ali, S. Thermal Investigations of Double Pass Solar Air Heater with Two Types of Porous Media of Different Thermal Conductivity. Eng. Technol. J. 2021. https://doi.org/10.30684/ETJ.V39I1A.1704

Abo-Elfadl, S.; Yousef, M.; El-Dosoky, M.; Hassan, H. Energy, Exergy, and Economic Analysis of Tubular Solar Air Heater with Porous Material: An Experimental Study. Appl. Therm. Eng. 2021, 196, 117294. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117294

Salih, M.; Alomar, O.; Yassien, H. Impacts of Adding Porous Media on Performance of Double-Pass Solar Air Heater under Natural and Forced Air Circulation Processes. Int. J. Mech. Sci. 2021, 210, 106738. https://doi.org/10.1016/J.IJMECSCI.2021.106738