Anti-Inflammatory and Antioxidant Activities of Crude Protein Extracts from Etlingera pavieana Rhizomes Grown at Different Cultivation Sites in Thailand

Main Article Content

Jongkonnee Padungkasem
Sittiruk Roytrakul
Janthima Jaresitthikunchai
Sawanya Charoenlappani
Klaokwan Srisook

Abstract

This study investigated the anti-inflammatory and antioxidant activities of crude protein extracts derived from Etlingera pavieana rhizomes cultivated in three eastern provinces in Thailand: Rayong, Chanthaburi, and Trat. Crude proteins were extracted using Tris-HCl buffer, and protein profiles were evaluated by SDS-PAGE. Anti-inflammatory activity was assessed via nitric oxide (NO) inhibition in lipopolysaccharide-stimulated RAW 264.7 macrophages, while antioxidant activity was assessed using DPPH radical scavenging, metal-chelating, and reducing power assays. All the crude protein extracts exhibited dose-dependent biological activities, with no significant cytotoxicity observed. The extract from Trat rhizomes showed the highest NO inhibition, DPPH scavenging activity, and reducing power, while the Rayong sample exhibited the strongest metal chelation. The findings demonstrate that the cultivation site affects the bioactivity of crude protein extracts, underscoring the potential application of E. pavieana rhizome proteins as functional ingredients in food or nutraceutical products.

Article Details

Section
Research Articles

References

Jafarzadeh, S.; Qazanfarzadeh, Z.; Majzoobi, M.; et al. Alternative proteins; A path to sustainable diets and environment. Curr. Res. Food Sci. 2024, 9, 100882. https://doi.org/10.1016/j.crfs.2024.100882

Langyan, S.; Yadava, P.; Khan, F. N.; et al. Sustaining protein nutrition through plant-based foods. Front. Nutr. 2022, 8, 772573. https://doi.org/10.3389/fnut.2021.772573

Chantaranothai, C.; Palaga, T.; Karnchanatat, A.; Sangvanich, P. Inhibition of nitric oxide production in the macrophage-like RAW 264.7 cell line by protein from the rhizomes of Zingiberaceae plants. Prep. Biochem. Biotechnol. 2013, 43(1), 60-78. https://doi.org/10.1080/10826068.2012.697958

Inthuwanarud, K.; Sangvanich, P.; Puthong, S.; Karnchanatat, A. Antioxidant and antiproliferative activities of protein hydrolysate from the rhizomes of Zingiberaceae plants. Pak. J. Pharm. Sci. 2016, 29 (6), 1893-1900.

Sompinit, K.; Lersiripong, S.; Reamtong, O.; et al. In vitro study on novel bioactive peptides with antioxidant and antihypertensive properties from edible rhizomes. LWT 2020, 134, 110227. https://doi.org/10.1016/j.lwt.2020.110227

Phonsena, P. Medicinal Plants in Khao Hin Son Herb Garden; Jettanaromphun Printing: 2007, 301 pp. (In Thai)

Poulsen, A. D.; Phonsena, P. Morphological variation and distribution of the useful ginger Etlingera pavieana (Zingiberaceae). Nord. J. Bot. 2017, 35, 467-475. https://doi.org/10.1111/njb.01407

Iawsipo, P.; Srisook, E.; Ponglikitmongkol, M.; Somwang, T.; Singaed, O. Cytotoxic effects of Etlingera pavieana rhizome on various cancer cells and identification of a potential anti-tumor component. J. Food Biochem. 2018, 42, e12508. https://doi.org/10.1111/jfbc.12508

Srisook, K.; Srisook, E. Pharmacological activities and phytochemicals of Etlingera pavieana (Pierre ex Gagnep) R.M.Sm. In Medicinal Plants – Use in Prevention and Treatment of Diseases. 2019. https://doi.org/10.5772/intechopen.89277

Poonasri, M.; Chiranthanut, N.; Srisook, E.; Srisook, K. Anti-neuroinflammatory activity of Etlingera pavieana rhizomal extract in LPS-induced microglial cells. Naresuan Phayao J. 2021, 14, 30-38.

Hao, J. Y.; Wan, Y.; Yao, X. H.; et al. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in southern China. PLoS ONE 2018, 13, e0206930. https://doi.org/10.1371/journal.pone.0206930

Khumaida, N.; Syukur, M.; Bintang, M.; Nurcholis, W. Phenolic and flavonoid content in ethanol extract and agro-morphological diversity of Curcuma aeruginosa accessions growing in West Java, Indonesia. Biodiversitas 2019, 20, 656-663. https://doi.org/10.13057/biodiv/d200306

Yahyaoui, A.; Arfaoui, M. O.; Rigane, G.; et al. Investigation on the chemical composition and antioxidant capacity of extracts from Crataegus azarolus L.: Effect of growing location of an important Tunisian medicinal plant. Chem. Afr. 2019, 2, 361-365. https://doi.org/10.1007/s42250-019-00054-1

Deesrisak, K.; Yingchutrakul, Y.; Krobthong, S.; Roytrakul, S.; Chatupheeraphat, C.; Subkorn, P.; Anurathapan, U.; Tanyong, D. Bioactive peptide isolated from sesame seeds inhibits cell proliferation and induces apoptosis and autophagy in leukemic cells. EXCLI J. 2021, 20, 709-721.

Srisook, K.; Srisook, E.; Nachaiyo, W.; Chan-In, M.; Thongbai, J.; Wongyoo, K.; Chawsuanthong, S.; Wannasri, K.; Intasuwan, S.; Watcharanawee, K. Bioassay-guided Isolation and mechanistic action of anti-Inflammatory agents from Clerodendrum inerme Leaves. J. Ethnopharmacol. 2015, 165, 94-102. https://doi.org/10.1016/j.jep.2015.02.043

Pechroj, S.; Kamonporn, P.; Oraphan, N.; et al. Comparative evaluation of antioxidant and anti-inflammatory activities of four seaweed species from the east coast of the Gulf of Thailand. J. Appl. Phycol. 2020, 13, 11-21.

Uthairat, C.; Srisook, E.; Srisook, K. Effects of drying methods and extraction conditions on total phenolic and flavonoid content and antioxidant activities of Helicteres isora L. fruit extracts. Burapha Sci. J. 2017, 22.

Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Nitric oxide synthases: Structure, function, and inhibition. Biochem. J. 2001, 357, 593-615. https://doi.org/10.1042/bj3570593

Zedler, S.; Faist, E. The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 2006, 12, 595-600. https://doi.org/10.1097/MCC.0b013e3280106806

Libby, P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr. Rev. 2007, 65, 140-146. https://doi.org/10.1301/nr.2007.dec.S140-S146

Elias, R. J.; Kellerby, S. S.; Decker, E. A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430-441. https://doi.org/10.1080/10408390701425615

Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14-27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035

Shi, Q.; Wang, J. J.; Chen, L.; et al. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Res. Int. 2020, 151, 110847. https://doi.org/10.1016/j.foodres.2021.110847

Canabady-Rochelle, L. L. S.; Selmeczi, K.; Collin, S.; Pasc, A.; Muhr, L.; Boschi-Muller, S. SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chem. 2018, 239, 478-485. https://doi.org/10.1016/j.foodchem.2017.06.116