Root Length and Diameter at Flag Leaf Stage Correlate with Important Yield Parameters in Corn (Zea mays L.) Grown in Alkaline Soil Under Drought Conditions

Main Article Content

Noriel Jay A. Magsayo
Elvira D. Jamio
Melissa I. Canunayon
Daniel B. Tangpos
Julius D. Caritan
Pet Roey L. Pascual

Abstract

Root growth and development are critical in determining corn yield, with nutrient and energy demands at a higher level during flag leaf stage. To simulate common abiotic stresses, an experiment was conducted under alkaline and drought conditions, which often limit root and shoot growth, nutrient uptake, and productivity. A randomized complete block design was used to evaluate the relationship between root length, root diameter, shoot growth, and yield components at the flag leaf stage. The results showed that grain yield had no relationship with shoot development but showed a strong positive correlation with nodal root length and diameter. Ear height (EH), ear weight (EW), unshelled weight (UW), shelled weight (SW), ear length (ER), and computed yield (CY) are strongly correlated with root length at r = 0.741, r = 0.578, r = 0.591, r = 0.869, and r = 0.874, respectively. Moreover, ear height, ear weight, unshelled weight, shelled weight, ear length, and computed yield are strongly correlated positively with the root length at r = 0.725, r = 0.831, and r = 0.822, r = 0.625, r = 0.408, and r = 0.622, respectively. These results indicate that nodal root length and thickness at the flag leaf stage are major determinants of eventual corn yield. The study emphasizes the importance of improved management practices to enhance root and shoot development during the flag leaf stage. It further suggests that breeding programs should focus on nodal root length and diameter, particularly under alkaline soil and drought conditions.

Article Details

Section
Research Articles

References

Abraha, T.; Nyende, A. B.; Githiri, S.; Kasili, R.; Araia, W.; Shaibu, A.; Rabiu, I.; Adnan, A. A. Variability of Root and Physiological Traits of Different Maturity Groups of Maize (Zea mays L.). J. Plant Breed. Crop Sci. 2015, 7(9), 232–238. https://doi.org/10.5897/JPBCS2015.0517

Wahab, A.; Abdi, G.; Saleem, M. H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C. C.; Marc, R. A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A comprehensive Review. Plants 2022, 11, 1620. https://doi.org/10.3390/plants11131620

Comas, L. H.; Becker, S. R.; Cruz, V. M. V.; Byrne, P. F.; Dierig, D. A. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013, 4, 442. https://doi.org/10.3389/fpls.2013.00442

Wajhat-Un-Nisa; Sandhu, S.; Ranjan, R.; et al. Root plasticity: an effective selection technique for identification of drought tolerant maize (Zea mays L.) inbred lines. Sci. Rep. 2023, 13, 5501. https://doi.org/10.1038/s41598-023-31523-w

Adee, E.; Roozeboom, K.; Balboa, G. R.; Schlegel, A.; Ciampitti, I. A. Drought-Tolerant Corn Hybrids Yield More in Drought-Stressed Environments with No Penalty in Non-Stressed Environments. Front. Plant Sci. 2016, 7, 1534. https://doi.org/10.3389/fpls.2016.01534

Rosa, V.; Silva, A.; Brito, D.; Júnior, J.; Silva, C.; Costa, M.; Oliveira, J.; Ribeiro, C. Drought Stress during the Reproductive Stage of Two Soybean Lines. Pesqui. Agropecu. Bras. 2020, 55, e01736. https://doi.org/10.1590/S1678-3921.pab2020.v55.01736

Enojada, G. R.; Asio, V. B. Morphological, physical, and chemical characteristics of soils derived from limestone rocks in Barili, CEBU. J. Trop. Technol. 2018, 18(2).

The Weather Channel. https://weather.com/weather/tenday/l/25414ec6b3178100e232564a4347cadead55c8e0758dce9d74ea69f0b1228ba (accessed 2025-09-13).

Philippine Atmospheric, Geophysical and Astronomical Services Administration. https://www.pagasa.dost.gov.ph/weather/weather-outlook-selected-philippine-cities (accessed 2025-09-13).

Eram, M. M. Cebu virtually had no rains in April. Cebu Daily News, May 1, 2024. https://cebudailynews.inquirer.net/571007/cebu-virtually-had-no-rains-in-april (accessed 2025-09-13).

Gao, Y.; Lynch, J. P. Reduced Crown Root Number Improves Water Acquisition under Water Deficit Stress in Maize (Zea mays L.). J. Exp. Bot. 2016, 67(15), 4545–4557. https://doi.org/10.1093/jxb/erw243

Chaudhary, W.; Ali, M.; Bajwa, K.; Iqbal, A.; Khan, M.; Shahid, A.; Aslam, M.; Kamran, S.; Bajwa, A.; Iqbal, M.; Azmat; Khan, A.; Shahid, M. Correlation Analysis of Maize Genotypes under Saline Stress and Its Impact on Morphological Characteristics. Life Sci. J. 2017, 14(7), 84–89. https://doi.org/10.7537/marslsj140717.15

Ju, C.; Zhang, W.; Liu, Y.; Li, J.; Wang, C.; Yang, X.; Yan, J. Genetic Analysis of Seedling Root Traits Reveals the Association of Root Trait with Other Agronomic Traits in Maize. BMC Plant Biol. 2018, 18, 171. https://doi.org/10.1186/s12870-018-1383-5

Li, Y.; Yang, J.; Shi, Z.; Pan, W.; Liao, Y.; Li, T.; Qin, X. Response of Root Traits to Plastic Film Mulch and Its Effects on Yield. Soil Tillage Res. 2021, 209, 104930. https://doi.org/10.1016/j.still.2020.104930

Wang, H.; Tang, X.; Yang, X.; Xu, C.; Kang, L.; Tong, H.; Zhang, Q.; Xiao, Y. Exploiting Natural Variation in Crown Root Traits via Genome-Wide Association Studies in Maize. BMC Plant Biol. 2021, 21, 346. https://doi.org/10.1186/s12870-021-03127-x

Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the Relationships Between Yield and Yield-Related Traits for Rice Varieties Released in China From 1978 to 2017. Front. Plant Sci. 2019, 10, 543. https://doi.org/10.3389/fpls.2019.00543

Silva, T. N.; Moro, G. V.; Moro, F. V.; Santos, D. M. M. Correlation and Path Analysis of Agronomic and Morphological Traits in Maize. Rev. Ciênc. Agron. 2016, 47(2), 351–357. https://doi.org/10.5935/1806-6690.20160041

Nzuve, F.; Githiri, S.; Mukunya, D. M.; Gethi, J. Genetic Variability and Correlation Studies of Grain Yield and Related Agronomic Traits in Maize. J. Agric. Sci. 2014, 6(9), 166. https://doi.org/10.5539/jas.v6n9p166

Lynch, J. P. Steep, Cheap and Deep: An Ideotype to Optimize Water and N Acquisition by Maize Root Systems. Ann. Bot. 2013, 112(2), 347–357. https://doi.org/10.1093/aob/mcs293

York, L. M.; Nord, E. A.; Lynch, J. P. Integration of Root Phenes for Soil Resource Acquisition. Front. Plant Sci. 2013, 4, 355. https://doi.org/10.3389/fpls.2013.00355

Bolaños, J.; Edmeades, G. O. The Importance of the Anthesis–Silking Interval in Breeding for Drought Tolerance in Tropical Maize. Field Crops Res. 1996, 48(1), 65–80. https://doi.org/10.1016/0378-4290(96)00036-6

Kumar, R.; Singh, S. K.; Srivastava, K.; Singh, R. K. Genetic Variability and Character Association for Yield and Quality Traits in Tomato (Lycopersicon esculentum Mill). Agriways 2015, 3(1), 31–36.

Samskriti, S.; Sharma, D.; Knadel, B. P. GENETIC PARAMETERS ESTIMATION OF PROMISING MAIZE HYBRIDS IN SUNDARBAZAR, LAMJUNG. Agricultura 2025, 133 (1-2), 174.

Mallhi, A. R.; Shehzad, A.; Fatima, S.; Parveen, N.; Shahzadi, A. Assessment of Genetic Diversity for Yield Associated Traits in Newly Synthesized Maize (Zea mays L.) Hybrids. INT. J. BIOL. BIOTECH. 2025, 22(2), 305–312.

Tasnim, F.; Ahmed, M. S.; Rahaman, M. A.; Sagor, G. H. M. Morphological characterization of maize (Zea mays L.) genotypes for drought tolerance. J. Phytology 2025, 17, 46–54. https://doi.org/10.25081/jp.2025.v17.9385

Liu, Z.; Ao, W.; Wu, S.; Deng, Q.; Ren, H.; Li, Q.; Li, H.; Zhang, P. Effects of Replacing Nitrogen Fertilizer with Organic Fertilizer on Soil Physicochemical Properties and Maize Yield in Yunnan’s Red Soil. Sustainability 2025, 17, 6634. https://doi.org/10.3390/su17146634

Ayad, B. N.; Fouad, H. M.; Salim, M. M. A.; AbouBakr, A. M. M. Harnessing Genetic Potential in Yellow Maize: Combining Ability, Heterosis, and Heritability Across Tow Environments. Mnia J. Agric. Res. Develop., Minia Univ. 2025, 45(4), 563–582. https://doi.org/10.21608/mjard.2025.446811