Enhancing Methane Production from Palm Oil Industry Waste through Thermotolerant Bacterial Bio-augmentation: Optimization and Kinetic Analysis

Main Article Content

Sittikorn Saelor
Wisarut Tukanghan
Peerawat khongkliang
Supattra In-chan
Nantharat Phruksaphithak

Abstract

This study investigated bio-augmentation strategies to enhance biogas production from palm oil industry residues through thermotolerant anaerobic digestion. Two bacterial strains, Cellulomonas sp. (HD19AZ1)  and Themoanaerobacterium thermosaccarolyticum (PSU-2), were evaluated at various inoculum to microorganism (I:S) ratios for both single digestion of empty fruit bunches (EFB) and co-digestion with palm oil mill effluent (POME). Results demonstrated that bio-augmentation significantly improved substrate biodegradability and methane yields. With HD19AZ1, the optimal I:S ratio of 70:10% for single digestion achieved methane yields of 146.38 mL-CH₄/gVS (a 24.94 mL-CH₄/gVS substrate improvement), while the 65:15% ratio for co-digestion yielded 166.55 mL-CH₄/gVS (33.38 m³/tonne substrate improvement). These represented increases of 33.59% and 39.65% in biodegradability for single and co-digestion, respectively. Volatile solids removal reached 41.82% in single digestion and 47.59% in co-digestion under optimal conditions. Kinetic analysis revealed that bio-augmentation with HD19AZ1 achieved methane production rates of 3.90 mL-CH₄/d for single digestion and 6.70 mL-CH₄/d for co-digestion, while PSU-2 augmentation increased rates by 2.14 times compared to control samples. The hydrolysis constant (Kh) ranged from 0.0214-0.0375 d⁻¹ for single digestion and 0.0095-0.0232 d⁻¹ for co-digestion, with lag phases of 5.15-16.11 days and 18.29-43.14 days, respectively. Modified Gompertz modeling confirmed these parameters with R² values exceeding 0.97. This study demonstrates that strategic bio-augmentation with thermotolerant bacteria significantly enhances methane production from palm oil industry waste by improving substrate accessibility and accelerating the hydrolysis of recalcitrant lignocellulosic components, offering promising applications for industrial-scale biogas production.

Article Details

Section
Research Articles

References

Hansen, S. B.; Padfield, R.; Syayuti, K.; Evers, S.; Zakariah, Z.; Mastura, S. Trends in Global Palm Oil Sustainability Research. J. Clean. Prod. 2022, 100, 99–114. https://doi.org/10.1016/j.jclepro.2015.03.051

Ahmad, S.; Kadir, M. Z. A. A.; Shafie, S. Current Perspective of the Renewable Energy Development in Malaysia. Renew. Sustain. Energy Rev. 2020, 115, 109356.

Suksong, W.; Kongjan, P.; Prasertsan, P.; Imai, T.; O-Thong, S. Optimization and Microbial Community Analysis for Production of Biogas from Solid Waste Residues of Palm Oil Mill Industry by Solid-State Anaerobic Digestion. Bioresour. Technol. 2016, 214, 166–174. https://doi.org/10.1016/j.biortech.2016.04.077

Saelor, S.; Kongjan, P.; O-Thong, S. Biogas Production from Anaerobic Co-Digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. Energy Procedia 2017, 138, 717–722. https://doi.org/10.1016/j.egypro.2017.10.206

Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Kazemi Shariat Panahi, H.; Nizami, A. S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 2: Mainstream and Downstream Strategies. Renew. Energy 2020, 146, 1392–1407. https://doi.org/10.1016/j.renene.2019.07.047

Tsapekos, P.; Kougias, P. G.; Vasileiou, S. A.; Treu, L.; Campanaro, S.; Lyberatos, G.; Angelidaki, I. Bioaugmentation with Hydrolytic Microbes to Improve the Anaerobic Biodegradability of Lignocellulosic Agricultural Residues. Bioresour. Technol. 2017, 234, 350–359. https://doi.org/10.1016/j.biortech.2017.03.043

Chaikitkaew, S.; Kongjan, P.; O-Thong, S. Biogas Production from Biomass Residues of Palm Oil Mill by Solid-State Anaerobic Digestion. Energy Procedia 2015, 79, 838–844. https://doi.org/10.1016/j.egypro.2015.11.575

Nzila, A. Mini Review: Update on Bioaugmentation in Anaerobic Processes for Biogas Production. Anaerobe 2017, 46, 3–12. https://doi.org/10.1016/j.anaerobe.2016.11.007

Ozbayram, E. G.; Kleinsteuber, S.; Nikolausz, M.; Ince, B.; Ince, O. Effect of Bioaugmentation by Cellulolytic Bacteria Enriched from Sheep Rumen on Methane Production from Wheat Straw. Anaerobe 2017, 46, 122–130. https://doi.org/10.1016/j.anaerobe.2017.03.013

Peng, X.; Börner, R. A.; Nges, I. A.; Liu, J. Impact of Bioaugmentation on Biochemical Methane Potential for Wheat Straw with Addition of Clostridium cellulolyticum. Bioresour. Technol. 2014, 152, 567–571. https://doi.org/10.1016/j.biortech.2013.11.067

Strang, O.; Ács, N.; Wirth, R.; Maróti, G.; Bagi, Z.; Rákhely, G.; Kovács, K. L. Bioaugmentation of the Thermophilic Anaerobic Biodegradation of Cellulose and Corn Stover. Anaerobe 2017, 46, 104–113. https://doi.org/10.1016/j.anaerobe.2017.05.014

Martin-Ryals, A.; Schideman, L.; Li, P.; Wilkinson, H.; Wagner, R. Improving Anaerobic Digestion of a Cellulosic Waste via Routine Bioaugmentation with Cellulolytic Microorganisms. Bioresour. Technol. 2015, 189, 62–70. https://doi.org/10.1016/j.biortech.2015.03.069

Yang, Z.; Guo, R.; Xu, X.; Wang, L.; Dai, M. Enhanced Methane Production via Repeated Batch Bioaugmentation Pattern of Enriched Microbial Consortia. Bioresour. Technol. 2016, 216, 471–477. https://doi.org/10.1016/j.biortech.2016.05.062

APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, 2017.

Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, 2012.

Jiang, Y.; Lu, J.; Lv, Y.; Wu, R.; Dong, W.; Zhou, J.; Jiang, M.; Xin, F. Efficient Hydrogen Production from Lignocellulosic Feedstocks by a Newly Isolated Thermophilic Thermoanaerobacterium sp. Strain F6. Int. J. Hydrogen Energy 2019, 44, 14380–14386. https://doi.org/10.1016/j.ijhydene.2019.01.226

Ferraro, A.; Dottorini, G.; Massini, G.; Mazzurco Miritana, V.; Signorini, A.; Lembo, G.; Fabbricino, M. Combined Bioaugmentation with Anaerobic Ruminal Fungi and Fermentative Bacteria to Enhance Biogas Production from Wheat Straw and Mushroom Spent Straw. Bioresour. Technol. 2018, 260, 364–373. https://doi.org/10.1016/j.biortech.2018.03.128

Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J. L.; Guwy, A. J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J. B. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Sci. Technol. 2009, 59, 927–934. https://doi.org/10.2166/wst.2009.040

Trzcinski, A. P.; Stuckey, D. C. Determination of the Hydrolysis Constant in the Biochemical Methane Potential Test of Municipal Solid Waste. Environ. Eng. Sci. 2012, 29, 848–854.

https://doi.org/10.1089/ees.2011.0105

Morris, D. L. Quantitative Determination of Carbohydrates with Dreywood's Anthrone Reagent. Science 1948, 107, 254–255. https://doi.org/10.1126/science.107.2775.254

Li, Y.; Li, L.; Sun, Y.; Yuan, Z. Bioaugmentation Strategy for Enhancing Anaerobic Digestion of High C/N Ratio Feedstock with Methanogenic Enrichment Culture. Bioresour. Technol. 2018, 261, 188–195. https://doi.org/10.1016/j.biortech.2018.02.069

Zhang, J.; Guo, R. B.; Qiu, Y. L.; Qiao, J. T.; Yuan, X. Z.; Shi, X. S.; Wang, C. S. Bioaugmentation with an Acetate-Type Fermentation Bacterium Acetobacteroides hydrogenigenes Improves Methane Production from Corn Straw. Bioresour. Technol. 2015, 179, 306–313. https://doi.org/10.1016/j.biortech.2014.12.022

Nkemka, V. N.; Gilroyed, B.; Yanke, J.; Gruninger, R.; Vedres, D.; McAllister, T.; Hao, X. Bioaugmentation with an Anaerobic Fungus in a Two-Stage Process for Biohydrogen and Biogas Production Using Corn Silage and Cattail. Bioresour. Technol. 2015, 185, 79–88. https://doi.org/10.1016/j.biortech.2015.02.100

Neumann, L.; Scherer, P. Impact of Bioaugmentation by Compost on the Performance and Ecology of an Anaerobic Digester Fed with Energy Crops. Bioresour. Technol. 2011, 102, 2931–2935. https://doi.org/10.1016/j.biortech.2010.11.068