Enhanced Electrical and Optical Properties of Cu-Doped ZnO Nanorods Synthesized via Co-Precipitation Method

Main Article Content

Onanong Detchaiyaphum
Buppachat Toboonsung

Abstract

Copper-doped zinc oxide (CZO) nanomaterials were prepared by the co-precipitation method, with a 0.5 M ZnCl2 solution as the starting material, doped with 0-5 wt.% CuCl2. The 100 wt.% Cu sample, synthesized without Zn, acts as a pure CuO reference. A 1 M NaOH solution was used as the precipitating agent to adjust the pH to 10. The final product was calcined at 500 °C for 3 h. Morphological analysis using SEM revealed that the CZO samples with 0-5 wt.% Cu exhibited a rod-shaped morphology, whereas the 100 wt.% Cu sample displayed a sheet-like structure with mixed nanoparticles. XRD confirmed the hexagonal wurtzite crystal structure in CZO with no detectable secondary phases, indicating successful incorporation of Cu2+ ions into the ZnO lattice. Elemental composition analysis using EDS supported this finding, showing a progressive increase in Cu content from 0.83 wt.% at 1 wt.% doping to 6.03 wt.% at 5 wt.%, accompanied by a corresponding decrease in Zn content. These results suggest that Cu2+ ions were effectively substituted for Zn2+ within the crystal lattice without forming impurity phases. Optical properties and energy band gap analysis, conducted using fluorescence and ultraviolet-visible spectrophotometry, indicated optimal conditions at 1 wt.% Cu doping. This level corresponded to the lowest band gap energy and the highest electrical conductivity value of 2.71 ´ 10-3 (Ω·cm)-1, demonstrating a strong correlation between optical absorption and electrical performance. This study presents a systematic investigation into the effect of low-level Cu doping on the structural, optical, and electrical properties of ZnO nanomaterials.

Article Details

Section
Research Articles

References

Traiwatcharanon, P.; Pon‑On, W.; Zacharias, M.; Wongchoosuk, C. Electrochemical copper oxide nanoparticles‑based sensor for butachlor plus propanil herbicide detection. J Mater Sci: Mater Electron. 2024, 35, 651. https://doi.org/10.1007/s10854-024-12419-5

Toboonsung, B. (2019) Surface morphologies and durability on water contact angle of titanium dioxide nanoparticle thin films. Key Eng. Mater. 2019, 798, 158-162. https://doi.org/10.4028/www.scientific.net/KEM.798.158

Nagabharana, R.M.; Kumaraswamy, G.N.; Susheel, K.G.; Umananda, M.B. Effect of thermal annealing on structural and electrical properties of TiO2 thin films. Thin Solid Films 2020, 710, 138262. https://doi.org/10.1016/j.tsf.2020.138262

Cuadra, J.G.; Estrada, A.C.; Oliveira, C.; Abderrahim, L.A.; Porcar, S.; Fraga, D.; Trindade, T.; Seabra, M.P.; Labrincha J.; Carda J.B. Functional properties of transparent ZnO thin films synthesized by using spray pyrolysis for environmental and biomedical applications. Ceram. Int. 2023, 49, 32779-32788. https://doi.org/10.1016/j.ceramint.2023.07.246

Sangeetha, A.; Jaya Seeli, S.; Bhuvana, K.P.; Abdul Kader, M.; Nayak, S.K.; Correlation between calcination temperature and optical parameter of zinc oxide (ZnO) nanoparticles. J. Sol-Gel Sci. Technol. 2019, 91, 261-272. https://doi.org/10.1007/s10971-019-05000-8

Toboonsung, B. Structure, magnetic property and energy band gap of Fe-doped NiO nanoparticles prepared by co-precipitation method. Key Eng. Mater. 2017, 751, 379-383. https://doi.org/10.4028/www.scientific.net/KEM.751.379

Narin, P.; Kutlu-Narin, E.; Lisesivdin, S.B.; Growth dynamics of mist-CVD grown ZnO nanoplatelets. Physica B: Condens. Matter. 2021, 614, 413028. https://doi.org/10.1016/j.physb.2021.413028

Yaowen, H.; Junhui, Y.; Yun, W.; Jiayao, J.; Jialu, W.; Haiyan, T.; Ying, Y.; Tianqi, W.; Lin, X.; Dong X. Femtosecond laser combined with hydrothermal method to construct three-dimensional spatially distributed wurtzite ZnO micro/nanostructures to enhance photocatalytic properties. Langmuir, 2024, 40, 3892-3899. https://doi.org/10.1021/acs.langmuir.3c03840

Kumar, M.; Dede Heri, Y.Y.; Mani, G.; Bogeshwaran, K.; Fatmah, A.A.; Reem, A.H. Biological synthesis and characterization of iron oxide (FeO) nanoparticles using Pleurotus citrinopileatus extract and its biomedical applications. Biomass Convers. Biorefin. 2024, 14,12575-12585. https://doi.org/10.1007/s13399-023-04382-8

Ahmed Adel, A.A.; Hadia, N.M.A.; Meshal, A.; Mohamed, S.; Abdel‑Hamid, I.M.; Fernández, S.; Rabia, M. Development of CuO nanoporous material as a highly efficient optoelectronic device. Appl. Phys. A 2022, 128, 321. https://doi.org/10.1007/s00339-022-05447-7

Sahar, I.S.; Maryam, A.A.; Wedian, K.A.; Ahmed, N.A. Low-cost applications by simple chemical method: solar cell and photodetector. Int. J. Nanosci. 2024, 23(2), 2350063. https://doi.org/10.1142/S0219581X23500631

Aneesiya, K.R.; Cindrella, L. Localized surface plasmon resonance of Cu-doped ZnO nanostructures and the material’s integration in dye sensitized solar cells (DSSCs) enabling high open-circuit potentials. J Alloys Compd. 2020, 829, 154497. https://doi.org/10.1016/j.jallcom.2020.154497

Junfeng, C.; Haijun, Y.; Ke, Z.; Ying, Z.; Deshuo, M.; Yeguo, S. Integration of ZnO and Au/ZnO nanostructures into gas sensor devices for sensitive ethanolamine detection. ACS Appl Nano Mater. 2023, 6(7), 5994-6001. https://doi.org/10.1021/acsanm.3c00350

To Thi, N.; Dang, T.T.L.; Nguyen, V.D.; Chu, T.X.; Sven, I.; Xuan, T.V.; Nguyen D.H. A sigh-performance hydrogen gas sensor based on Ag/Pd nanoparticle-functionalized ZnO nanoplates. RSC Advances 2023, 13, 13017-13029. https://doi.org/10.1039/D3RA01436C

Thambidurai, S.; Gowthaman, P.; Venkatachalam, M.; Suresh, S. Enhanced bactericidal performance of nickel oxide-zinc oxide nanocomposites synthesized by facile chemical co-precipitation method. J Alloys Compd. 2020, 830, 154642. https://doi.org/10.1016/j.jallcom.2020.154642

Negi, P.B.; Rana, A.; Joshi, N.C.; Mishra, A.; Manoj, C.L.; Sunori, S.K. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against Escherichia coli and Salmonella enterica-water borne pathogens. Asia Pac J Sci Technol. 2024; 29(03), APST-29. https://doi.org/10.14456/apst.2024.40

Sajjad, M.; Ullah, I.; Khanb, M.I.; Khanc, J.; Khana, M.Y.; Qureshi, M.T. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 2018, 9, 1301-1309. https://doi.org/10.1016/j.rinp.2018.04.010

Ravichandran, A.T.; Karthick, R. Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater. 2020, 5, 100072. https://doi.org/10.1016/j.rinma.2020.100072

Al-Khezraji, A.A.R.; Abd Ali, H.R.; Yousif, A.A.; Abed, H.R. Effect of mixed ZnO/CuO nanoparticles on the structural, morphological, and topographical properties. J Phys Conf Ser. 2021, 1963(1), 012053. https://doi.org/10.1088/1742-6596/1963/1/012053

Meryem, L.Z.; Touidjen, N.E.H.; Aida, M.S.; Aouabdia, N.; Rouabah, S. Growth of undoped ZnO thin films by spray pyrolysis: effect of precursor concentration. J Opt. 2023, 52, 1782-1788. https://doi.org/10.1007/s12596-022-01079-5

Montes, J.M.; Cuevas, F.G.; Cintas, J. Electrical resistivity of metal powder aggregates. Metall Mater Trans B. 2007, 38, 957-964. https://doi.org/10.1007/s11663-007-9097-3

Kingpho, P.; Toboonsung, B. Improvement of the Electrical properties of ZnO nanomaterials with Fe by Co-precipitation method. Curr Appl Sci Technol. 2025, 25(3), e0263485. https://doi.org/10.55003/cast.2024.263485

Dejam, L.; Kulesza, S.; Sabbaghzadeh. J.; Ghaderi, A.; Solaymani, S.; Talu. S.; Bramowicz, M.; Amouamouha, M.; Salehi shayegan, A.H.; Sari, A.H. ZnO, Cu-doped ZnO, Al-doped ZnO and Cu-Al doped ZnO thin films: Advanced micro-morphology, crystalline structures and optical properties. Results Phys. 2023, 44, 106209. https://doi.org/10.1016/j.rinp.2023.106209

Lin, J.H.; Patil R.A.; Devan, R.S.; Liu, Z.A.; Wang, Y.P.; Ho, C.H.; Liou, Y.; Ma Y.R. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Sci Rep. 2014, 4, 6967. https://doi.org/10.1038/srep06967

Mahroug, A.; Mari, B.; Mollar, M.; Boudjadar, I.; Guerbous, L.; Henni, A.; Selmi N. Studies on structural, surface morphological, optical, luminescence and UV photodetection properties of sol-gel Mg doped ZnO thin films. Surf Rev Lett. 2018, 26(03), 1850167. https://doi.org/10.1142/S0218625X18501676

Gaur, L.K.; Gairola, P.; Gairola, S.P.; Mathpal, M.C.; Kumar, P.; Kumar, S.; Kushavah, D.; Agrahari, V.; Aragon, F.F.H.; Maria, A.G.S.; Swart, H.C. Cobalt doping induced shape transformation and its effect on luminescence in zinc oxide rod-like nanostructures. J Alloys Compd. 2021, 868, 159189. https://doi.org/10.1016/j.jallcom.2021.159189

Redwanul I, Suprio SS, Reana R, Nayeemul I, Torikul I. Unveiling the synthesis, characteristics, electrical conductivity, photocatalytic activity, and electrochemical activity of eco-friendly zinc oxide nanoparticles. Adv. Sens. Energy Mater. 2024, 3, 100105. https://doi.org/10.1016/j.asems.2024.100105

Shahroz, S.; Awais, K.; Zaid, M.A.; Thamer, A.; Arshad, A.; Abdul, J.; Yasmin Begum M.; Kandasamy G. A comparative analysis of optical and electrical properties of pure CuO and Zn doped CuO nanoparticles for optoelectronic device applications. J Sol-Gel Sci Technol. 2025, 113, 213-224. https://doi.org/10.1007/s10971-024-06591-7