Bactericidal Properties, Biofilm Formation Inhibition, and Chemical Profiling of Piper argyrites and Piper betel L.
Main Article Content
Abstract
Betel leaf has been an important medicinal plant for therapeutic purposes since ancient times. This study aims to investigate the ethanolic leaf extracts of Piper betel (PB) and Piper argyrites (PA), native to Satun Province, Thailand. The antibacterial properties of the extracts were evaluated using a disc diffusion assay on four bacterial isolates, including Escherichia coli PT005, Pseudomonas aeruginosa PT00A2, Klebsiella pneumoniae PT00A1, and Staphylococcus aureus RTV01. PB leaf extracts demonstrated a substantial effect on K. pneumoniae PT00A1 with an inhibition zone of 25.77 ± 0.04 mm, while PA leaf extract showed potent activity against E. coli PT005 with an inhibition zone of 17.23±0.44 mm. In addition, both extracts exhibited bactericidal effects, with low MIC and MBC values ranging from 6.3 to 50 µg/mL, as determined by a broth dilution assay. Moreover, biofilm formation inhibition was evaluated using the crystal violet method. The results showed that both extracts effectively inhibited biofilm formation in bacterial strains. PA and PB extracts demonstrated high efficiency in reducing the biofilm formation of S. aureus RTV01, achieving reductions of 94.94% and 88.43%, respectively. The extracts showed a reduction in biofilm formation of 36.18% to 94.94% in the tested strains. The chemical profiles of the plants were analyzed using the GC-MS technique, which revealed that hydroxychavicol was a major constituent of both plant species, with varying amounts and distinct profiles. P. argyrites exhibited a more diverse range of compounds than P. betel. The findings suggest that these betel plant extracts need further investigation for potential therapeutic applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Cheung, C. Y. G.; Bae, J. S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688
Kondo, S.; Apisarnthanarak, A.; Trakulsomboon, S.; Bootkotr, W.; Mingmalairak, C.; Mahawongkajit, P.; Juntong, J.; Limpavitayaporn, P.; Sriussadaporn, E.; Tongyoo, A.; Boonyasatid, P. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales and distribution of blaESBL genes from patients who underwent abdominal surgery. Sci. Technol. Asia 2022, 27(4), 104–116.
Sheu, C. C.; Lin, S. Y.; Chang, Y. T.; Lee, C. Y.; Chen, Y. H.; Hsueh, P. R. Management of infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Review of Anti-infective Therapy 2018, 16(3), 205–218. https://doi.org/10.1080/14787210.2018.1436966
Preda, V. G.; Săndulescu, O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discov. 2019, 7(3), e100. https://doi.org/10.15190/d.2019.13
Shree, P.; Singh, C. K.; Sodhi, K. K.; Surya, J. N.; Singh, D. K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023, 16, 100084. https://doi.org/10.1016/j.medmic.2023.100084
Mendes, S. G.; Combo, S. I.; Allain, T.; Domingues, S.; Buret, A. G.; Da Silva, G. J. Co regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42(12), 1405–1423. https://doi.org/10.1007/s10096-023-04677-8
Singh, T.; Singh, P.; Pandey, V. K.; Singh, R.; Dar, A. H. A literature review on bioactive properties of betel leaf (Piper betle L.) and its applications in food industry. Food Chemistry Advances 2023, 1(3), 100536. https://doi.org/10.1016/j.focha.2023.100536
Nayaka, N. M.; Sasadara, M. M.; Sanjaya, D. A.; Yuda, P. E.; Dewi, N. L.; Cahyaningsih, E.; Hartati, R. Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules 2021, 26(8), 2321. https://doi.org/10.3390/molecules26082321
Carsono, N.; Tumilaar, S. G.; Kurnia, D.; Latipudin, D.; Satari, M. H. A review of bioactive compounds and antioxidant activity properties of Piper species. Molecules 2022, 27(19), 6774. https://doi.org/10.3390/molecules27196774
Livermore, D. M.; Brown, D. F. J. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother. 2001, 48, 59–64.
Chanprapai, P.; Kubo, I.; Chavasiri, W. Anti-rice pathogenic microbial activity of Persicaria sp. extracts. Sci. Technol. Asia 2018, 18, 32–41. https://doi.org/10.14456/scitechasia.2018.30
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI standard M07; Wayne, PA, USA, 2018.
Padumanonda, T.; Phontree, K. Total phenolic, total flavonoid, total condensed tannin contents and antimicrobial activity against diarrheal bacteria of the bark and fruit of Terminalia nigrovenuloa Pierre ex Laness. Sci. Technol. Asia 2021, 16, 162–169.
Ngoc, L. T.; Hung, H. Y.; Tu, Q. N. Inhibitory effects of Sterculia lychnophora hance ethanol extracts on biofilm formation and virulence factors of Pseudomonas aeruginosa. J. microbiol., biotechnol. food sci. 2024, 13(6), e10483. https://doi.org/10.55251/jmbfs.10483
Pradhan, D.; Suri, K. A.; Pradhan, D. K.; Biswasroy, P. Golden heart of the nature: Piper betle L. J. Pharmacogn. Phytochem. 2013, 1 (6), 147–167.
Boripun, R.; Paopradit, P.; Prampramote, J.; Narinthorn, R.; Intongead, S.; Sangkanu, S.; Narongrit, T.; Mitsuwan, W. Bactericidal activity of Piper betle L. extract against antibiotic resistant Salmonella spp. Isolated from pig farms in southern Thailand. Vet. Integr. Sci. 2022, 20(3), 557–569. https://doi.org/10.12982/VIS.2022.042
Stuper-Szablewska, K.; Szablewski, T.; Przybylska-Balcerek, A.; Szwajkowska-Michałek, L.; Krzyżaniak, M.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z. Antimicrobial activities evaluation and phytochemical screening of some selected plant materials used in traditional medicine. Molecules 2023, 28(1), 244. https://doi.org/10.3390/molecules28010244
Li, Y.; Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1238482. https://doi.org/10.3389/fmicb.2023.1238482
Lao, R. C.; Yabes, A. M.; Tobias-Altura, M.; Panganiban. L. C.; Makalinao, I. R. In vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract on Staphylococcus aureus ATCC 29213. Acta Medica Philippina 2023, 57(12), 53–60. https://doi.org/10.47895/amp.vi0.6412
Das, S.; Parida, R.; Sandeep, I. S.; Kar, B.; Nayak, S.; Mohanty, S. Chemical composition and antioxidant activity of some important betel vine landraces. Biologia 2016, 71(2), 128–132. https://doi.org/10.1515/biolog-2016-0030
Kaintura, P.; Bhandari, M.; Kumar, R. Medicinal values of betel leaves and its application in food products: A review. Innov. Pharm. 2020, 9(6), 344–348.
Madhumita, M.; Guha, P.; Nag, A. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and antimicrobial activity. Ind. Crops. Prod. 2019, 138, 111578. https://doi.org/10.1016/j.indcrop.2019.111578
Islam, M. A.; Ryu, K. Y.; Khan, N.; Song, O. Y.; Jeong, J. Y.; Son, J. H.; Jamila, N.; Kim, K. S. Determination of the volatile compounds in five varieties of Piper betle L. from Bangladesh using simultaneous distillation extraction and gas chromatography/mass spectrometry (SDE-GC/MS). Anal. Lett. 2020, 53(15), 2413–2430. https://doi.org/10.1080/00032719.2020.1744160
Singh, D.; Majumdar, A. G.; Gamre, S.; Subramanian, M. Membrane damage precedes DNA damage in hydroxychavicol treated E. coli cells and facilitates cooperativity with hydrophobic antibiotics. Biochimie 2021, 180, 158–168. https://doi.org/10.1016/j.biochi.2020.11.008
Jackson, J.; Romero, G.; Hawkins, D.; Cornwall, R. G.; Lukov, G. L. Identifying the structural components responsible for the antiproliferative properties of hydroxychavicol. Compounds 2023, 3(4), 552–560. https://doi.org/10.3390/compounds3040039
Poomirat, S.; Jaiarree, N.; Itharat, A.; Ruangnoo, S. Cytotoxicity against cervical and breast cancer cells of Leard-Ngam remedy and its plant compositions. Sci. Technol. Asia 2020, 25(3), 38–50.