Effect of Storage Temperature on Degradation and Antioxidant Activity of Anthocyanin in Community-Produced Mao Juice from Sakon Nakhon Province, Thailand

Main Article Content

Thitiya Sripakdee
Wuttichai Roschat
Thatphong Chaisura
Aphisit Maiaka

Abstract

This study examined the influence of storage temperature and duration on anthocyanin degradation and antioxidant activity in Mao juice, a community-produced beverage from Antidesma thwaitesianum in Sakon Nakhon Province, Thailand. Four commercial samples were stored at 4°C and 30°C for 35 days. Anthocyanin content was determined by the pH differential method, while antioxidant activity was assessed using ABTS and FRAP assays. Results showed that Sample A had the highest initial anthocyanin content at 4 °C (41.74 mg/L), decreasing slightly to 40.24 mg/L. At 30 °C, anthocyanin degradation was more pronounced, with Sample A declining from 36.06 to 33.89 mg/L, Sample B from 21.87 to 18.86 mg/L, and Samples C and D dropping from 1.03 to 0.70 mg/L and 0.76 to 0.53 mg/L, respectively. Degradation followed first-order kinetics, with rate constants ranging from 1.0×10⁻³ to 10.9×10⁻³ day⁻¹ and half-lives between 99.0 and 9.1 weeks. Sample A was the most stable (k = 1.0×10⁻³ day⁻¹ at 4°C), while Sample C degraded fastest at 30 °C. Antioxidant capacity was highest in Sample A at 4°C on day 0 (1,286.17 mg Trolox/100 mL, ABTS assay), decreasing to 1,240.16 mg by day 35, compared with 1,184.46 mg at 30°C. FRAP values showed parallel trends, with Sample A declining from 826.56 to 811.55 mg Trolox/100 mL at 4°C and from 770.80 to 750.38 mg at 30 °C. The greatest antioxidant loss occurred in Sample B at 30°C (k = 10.0×10⁻³ day⁻¹). Overall, cold storage was shown to preserve Mao juice stability and functional quality, providing practical guidance for local producers to extend shelf life.

Article Details

Section
Research Articles

References

Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 2017, 61, 1361779. https://doi.org/10.1080/16546628.2017.1361779

Gonzalez de Mejia, E.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The colors of health: Chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annual Review of Food Science and Technology 2020, 11, 145–182. https://doi.org/10.1146/annurev-food-032519-051729

Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.H.X. Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research 2022, 8, 100306. https://doi.org/10.1016/j.jafr.2022.100306

Huang, H.; Ying, P.; Wang, Y.; Wu, Q.; Wang, L.; Fu, X. Temperature dependent convection induced incremental extraction of anthocyanins from Melastoma dodecandrum Lour. based on recyclable natural deep eutectic system. Food Chemistry 2025, 484, 144331. https://doi.org/10.1016/j.foodchem.2025.144331

Laila, U.; Yuliyanto, P.; Hariyadi, S.; Juligani, B.; Indrianingsih, A.W.; Kristanti, D.; Ariani, D.; Herawati, E.R.N.; Iwansyah, A.C.; Anwar, M.; Ginting, E.; Pangestu, A.; Andriana, Y.; Purwaningsih, H.; Indrasari, S.D.; Nurmahmudi, N.; Hariadi, H.; Hoo, A.W.; Wardhani, R. Incorporation of lowpH purplefleshed sweet potato (Ipomoea batatas L.) anthocyanin extract into a sucrose matrix: Characterization and application in powdered beverage. Food and Bioproducts Processing 2025, 151, 172–188. https://doi.org/10.1016/j.fbp.2025.03.008

Lv, G.; Zhao, J. Molecular mechanism of differences in anthocyanin components between pericarp and red hairy root of early maturing litchi cultivars. Plant Physiology and Biochemistry 2025, 223, 109895. https://doi.org/10.1016/j.plaphy.2025.109895

Sripakdee, T.; Manochai, K.; Singkhan, P.; Jandaruang, J.; Arthan, S.; Siriwong, K.; Poomsuk, N. Fermentation kinetic and alphaamylase inhibition studies of Mao wine fermented by three commercial Saccharomyces cerevisiae yeasts. Trends in Sciences 2024, 21, 7462. https://doi.org/10.48048/tis.2024.7462

Suravanichnirachorn, W.; Haruthaithanasan, V.; Suwonsichon, S.; Sukatta, U.; Maneeboon, T.; Chantrapornchai, W. Effect of carrier type and concentration on the properties, anthocyanins and antioxidant activity of freezedried Mao (Antidesma bunius (L.) Spreng) powders. Agricultural and Natural Resources 2018, 52, 354–360. https://doi.org/10.1016/j.anres.2018.09.011

Rosruen, T.; Vadhanasindhu, V.; Phuwapraisirisan, P. Anthocyanin and polyphenol contents of Antidesma thwaitesianum Müll. Arg. berry juice being stabilized by protein matrices. International Journal of Agricultural Technology 2021, 17, 685–696.

Krongyut, O.; Sutthanut, K. Phenolic profile, antioxidant activity, and antiobesogenic bioactivity of Mao Luang fruits (Antidesma bunius L.). Molecules 2019, 24, 4109. https://doi.org/10.3390/molecules24224109

Ngamlerst, C.; Udomkasemsab, A.; Kongkachuichai, R.; Kwanbunjan, K.; Chupeerach, C.; Prangthip, P. The potential of antioxidantrich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a highfat diet. BMC Complementary and Alternative Medicine 2019, 19, 294. https://doi.org/10.1186/s12906-019-2716-0

CastroAcosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyaninrich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. Journal of Nutritional Biochemistry 2016, 38, 154–161. https://doi.org/10.1016/j.jnutbio.2016.09.002

Aksornchu, P.; Chamnansilpa, N.; Adisakwattana, S.; Thilavech, T.; Choosak, C.; Marnpae, M.; Mäkynen, K.; Dahlan, W.; Ngamukote, S. Inhibitory effect of Antidesma bunius fruit extract on carbohydrate digestive enzymes activity and protein glycation in vitro. Antioxidants 2021, 10, 32. https://doi.org/10.3390/antiox10010032

Picot, C.M.N.; Subratty, A.H.; Mahomoodally, M.F. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on αamylase, αglucosidase, glucose entrapment, and amylolysis kinetics in vitro. Advances in Pharmacological Sciences 2014, 2014, 739834. https://doi.org/10.1155/2014/739834

Jorjong, S.; Butkhup, L.; Samappito, S. Phytochemicals and antioxidant capacities of MaoLuang (Antidesma bunius L.) cultivars from Northeastern Thailand. Food Chemistry 2015, 181, 248–255. https://doi.org/10.1016/j.foodchem.2015.02.093

Kukongviriyapan, U.; Kukongviriyapan, V.; Pannangpetch, P.; Donpunha, W.; Sripui, J.; SaeEaw, A.; Boonla, O. Mamao pomace extract alleviates hypertension and oxidative stress in nitric oxide deficient rats. Nutrients 2015, 7, 6179–6194. https://doi.org/10.3390/nu7085275

Udomkasemsab, A.; Ngamlerst, C.; Kwanbunjun, K.; Krasae, T.; Amnuaysookkasem, K.; Chunthanom, P.; Prangthip, P. Maoberry (Antidesma bunius) improves glucose metabolism, triglyceride levels, and splenic lesions in highfat dietinduced hypercholesterolemic rats. Journal of Medicinal Food 2019, 22, 29–37. https://doi.org/10.1089/jmf.2018.4203

Xue, H.; Zhao, J.; Wang, Y.; Shi, Z.; Xie, K.; Liao, X.; Tan, J. Factors affecting the stability of anthocyanins and strategies for improving their stability: A review. Food Chemistry: X 2024, 24, 101883. https://doi.org/10.1016/j.fochx.2024.101883

Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Current Plant Biology 2022, 29, 100238. https://doi.org/10.1016/j.cpb.2022.100238

Saini, A.; Hamid, A.; Shams, R.; Dash, K.K.; Shaikh, A.M.; Kovács, B. Anthocyanin extraction from black carrot: Health promoting properties and potential applications. Journal of Agriculture and Food Research 2025, 19, 101533. https://doi.org/10.1016/j.jafr.2024.101533

Toklucu, A.K.; Özkan, M.; Cemeroğlu, B. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry 2007, 101, 212–218. https://doi.org/10.1016/j.foodchem.2006.01.019

Toklucu, A.K.; Özkan, M.; Cemeroğlu, B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chemistry 2006, 97, 598–605. https://doi.org/10.1016/j.foodchem.2005.05.036

Rezazadeh, A.; Ghasempour, Z. Anthocyanin stabilization in beverages. In: Mérillon, J.M.; Rivière, C.; Lefèvre, G. (Eds.), Natural Products in Beverages, Reference Series in Phytochemistry; Springer: Cham, 2025; pp. 178. https://doi.org/10.1007/978-3-031-38663-3_178

Muche, B.M.; Speers, R.A.; Rupasinghe, H.P.V. Storage temperature impacts on anthocyanins degradation, color changes, and haze development in juice of “Merlot” and “Ruby” grapes (Vitis vinifera). Frontiers in Nutrition 2018, 5, 100. https://doi.org/10.3389/fnut.2018.00100

Türkyılmaz, M.; Özkan, M. Kinetics of anthocyanin degradation and polymeric colour formation in black carrot juice concentrates during storage. International Journal of Food Science and Technology 2012, 47, [no pagination given]. https://doi.org/10.1111/j.1365-2621.2012.03098.x

Tena, N.; Asuero, A.G. Uptodate analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and industrial application. Antioxidants 2022, 11, 286. https://doi.org/10.3390/antiox11020286

Khezri, S.; Ghanbarzadeh, B.; Ehsani, A. Barberry anthocyanins: Recent advances in extraction, stability, biological activities, and utilisation in food systems—A review. International Journal of Food Science and Technology 2025, 60, vvaf031. https://doi.org/10.1093/ijfood/vvaf031

Chua, L.S.; Thong, H.Y.; Soo, J. Effect of pH on the extraction and stability of anthocyanins from jaboticaba berries. Food Chemistry Advances 2024, 5, 100835. https://doi.org/10.1016/j.focha.2024.100835

Chua, L.S.; Abd Wahab, N.S. Drying kinetic of jaboticaba berries and natural fermentation for anthocyaninrich fruit vinegar. Foods 2023, 12, 65. https://doi.org/10.3390/foods12010065

Handayani, L.; Aprilia, S.; Arahman, N.; Bilad, M.R. Identification of the anthocyanin profile from butterfly pea (Clitoria ternatea L.) flowers under varying extraction conditions: Evaluating its potential as a natural blue food colorant and its application as a colorimetric indicator. South African Journal of Chemical Engineering 2024, 49, 151–161. https://doi.org/10.1016/j.sajce.2024.04.008

Li, J.L.; Yu, J.H.; Li, W.Z.; Deng, D.J.; Xin, Y.; Reaney, M.J.T.; Cai, Z.Z.; Wang, Y. Optimized twostep flash chromatography method for largescale isolation of linusorb and its antioxidant capacity evaluation. Food Research International 2025, 207, 116082. https://doi.org/10.1016/j.foodres.2025.116082

Cai, W.W.; Hu, X.M.; Wang, Y.M.; Chi, C.F.; Wang, B. Bioactive peptides from skipjack tuna cardiac arterial bulbs: Preparation, identification, antioxidant activity, and stability against thermal, pH, and simulated gastrointestinal digestion treatments. Marine Drugs 2022, 20, 626. https://doi.org/10.3390/md20100626

Bai, H.; Wang, S.; Wang, Z.M.; Zhu, L.L.; Yan, H.B.; Wang, Y.B.; Wang, X.Y.; Peng, L.; Liu, J.Z. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Research International 2024, 184, 114262. https://doi.org/10.1016/j.foodres.2024.114262

Bamigbade, G.B.; Subhash, A.; Abdin, M.; Jarusheh, H.; AbuJdayil, B.; Liu, S.Q.; Palmisano, G.; Ali, A.; Eldin, A.K.; Ayyash, M. Date pomace polysaccharidescapped selenium nanoparticles: Biosynthesis, optimization, physicochemical characterization, biological activities, stability and gut microbiota modulation. Food Hydrocolloids for Health 2025, 7, 100198. https://doi.org/10.1016/j.fhfh.2025.100198

Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–Ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. https://doi.org/10.3390/molecules25133088

Muthu, S.; Altemimi, A.B.; Lakshmikanthan, M.; Krishnan, K.; ALKaisy, Q.H.; Awlqadrf, F.H.; Hesarinejad, M.A. Phycocolloids from Sargassum microcystum: Immunomodulatory and antioxidant activities of alginic acid and fucoidan. Food Hydrocolloids for Health 2025, 7, 100209. https://doi.org/10.1016/j.fhfh.2025.100209

HernandezPrieto, D.; Salar, F.J.; Garre, A.; Fernandez, P.S.; GarcíaViguera, C.; Fría, J. Kinetic modelling of anthocyanins and vitamin C degradation in a maquicitrus beverage during storage for different sweeteners and pasteurization treatments. LWT  Food Science and Technology 2024, 199, 116082. https://doi.org/10.1016/j.lwt.2024.116082

Chen, J.Y.; Du, J.; Li, M.L.; Li, C.M. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT  Food Science and Technology 2020, 128, 109448. https://doi.org/10.1016/j.lwt.2020.109448

Kechinski, C.P.; Guimarães, P.V.R.; Noreña, C.P.Z.; Marczak, L.D.F. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science 2010, 75, C173–C176. https://doi.org/10.1111/j.1750-3841.2009.01479.x

Wu, X.; Lin, Q.; Belwal, T.; Huang, H.; Zou, L.; Lv, W.; Luo, Z. Effect of advanced/hybrid oxidation process involving ultrasonication and ultraviolet radiation (sonophotolysis) on anthocyanin stability: Degradation kinetics and mechanism. Food Chemistry 2022, 370, 131083. https://doi.org/10.1016/j.foodchem.2021.131083

Dawidowicz, A.L.; Olszowy, M. Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. European Food Research and Technology 2011, 232, 837–842. https://doi.org/10.1007/s00217-011-1451-7

Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in research on the activity evaluation, mechanism and structure–activity relationships of natural antioxidant peptides. Antioxidants 2024, 13, 479. https://doi.org/10.3390/antiox13040479