The Batch Adsorption Process of Basic Dyes Using Dialium Cochinchinensis Seed Activated Carbon: Kinetics and Isotherms
Main Article Content
บทคัดย่อ
The seeds of Dialium cochinchinense, an agricultural byproduct, were converted into an eco-friendly and cost-effective activated carbon (DSAC) for the adsorption of basic dyes, namely Rhodamine B (RB) and Crystal Violet (CV), from aqueous solutions. Batch adsorption experiments were performed to evaluate the effects of key parameters, including initial dye concentration, contact time, adsorbent dosage, and solution pH. The adsorption kinetics followed the pseudo-second-order model, indicating that chemisorption may play a role in the adsorption process. Equilibrium data were best fitted by the Langmuir isotherm model, with correlation coefficients (R²) close to 1, suggesting monolayer adsorption. The maximum adsorption capacities (qₘ) were 416.67 mg g⁻¹ for RB and 526.32 mg g⁻¹ for CV at 30 °C. These results demonstrate that DSAC is a sustainable, efficient, and economically viable adsorbent with strong potential for industrial wastewater treatment applications.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
Benkhaya, S.; El Harfi, S.; El Harfi, A. Classifications, Properties, and Applications of Textile Dyes: A Review. Appl. J. Environ. Eng. Sci. 2017, 3(3), 311–320.
Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of Basic Dyes from Aqueous Solution onto Activated Carbons. Chem. Eng. J. 2008, 135(3), 174–184. https://doi.org/10.1016/j.cej.2007.02.023
Massoud, K.; Motaba, S.; Sahar, M. Removal of Dyes from the Environment by Adsorption Process. Chem. Mater. Eng. 2018, 6(2), 31–35. https://doi.org/10.13189/cme.2018.060201
Sasan, F.; Gholian, J.; Konečný, J. J.; Baloch, A.; Kordestani, H. K. Sustainable and Optimized Values for Municipal Wastewater: Removal of BOD and COD Using Granular Activated Carbon and Genetic Algorithm-Based Simulation. J. Clean. Prod. 2023, 417, 137932. https://doi.org/10.1016/j.jclepro.2023.137932
Sarakarnkosol, W. Pollution and Risk of Wastewater from Textile Dyeing Process. Environ. J. 2017, 21(1), 7–14 (in Thai).
Surafel, M. B.; Venkatesa, P.; Tsegaye, S.; Abraham, G. Sugarcane Bagasse-Based Activated Carbon Preparation and Its Adsorption Efficacy for Removal of BOD and COD from Textile Effluents. Bioresour. Technol. Rep. 2021, 14, 100664. https://doi.org/10.1016/j.biteb.2021.100664
Ibrahim, E. S.; Laszlo, E.; Kim, J.-H.; Kim, H. S. Adsorption and Photocatalytic Degradation of Methylene Blue over Hydrogen-Titanate Nanofibres. Water Res. 2013, 47(12), 4115–4125. https://doi.org/10.1016/j.watres.2012.12.045
Vijayaraghavan, G.; Shanthakumar, S. Effective Removal of Reactive Magenta Dye in Textile Effluent by Coagulation Using Algal Alginate. Desalin. Water Treat. 2018, 121, 22–27. https://doi.org/10.5004/dwt.2018.22190
Wang, Y.; Liu, C.; Ma, M.; Li, P.; Li, X.; Yu, Y. Fabrication and Evaluation of GO/TiO₂-Based Molecularly Imprinted Nanocomposite Membranes. Sep. Purif. Technol. 2019, 212, 245–254. https://doi.org/10.1016/j.seppur.2018.11.042
Chakraborty, S.; Chowdhury, S.; Das Saha, P. Adsorption of Crystal Violet from Aqueous Solution onto NaOH-Modified Rice Husk. Carbohydr. Polym. 2011, 86(4), 1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058
Hayeeye, F.; Sattar, M.; Tekasakul, S.; Sirichote, O. Adsorption of Rhodamine B on Activated Carbon from Rubber Fruit Pericarp. Songklanakarin J. Sci. Technol. 2014, 36(2), 177–187.
Gaikwad, R. W.; Misal, S. A. Sorption Studies of Methylene Blue on Silica Gel. Int. J. Chem. Eng. Appl. 2010, 1(4), 342–345. https://doi.org/10.7763/IJCEA.2010.V1.59
Imessaouden, A.; Cheikh, S.; Hadadi, A.; Hamri, N.; Bollinger, J.-C.; Amrane, A.; Tahraoui, H.; Manseri, A.; Mouni, L. Adsorption Performance of Zeolite for Congo Red Removal. Separations 2023, 10 (1), 57. https://doi.org/10.3390/separations10010057
Sarkar, T. K.; Chakraborty, N.; Basu, S.; Ghosh, A.; Inoue, H.; Fukumori, Y. Adsorption of Methyl Orange onto Chitosan. J. Water Resour. Prot. 2010, 2, 898–906. https://doi.org/10.4236/jwarp.2010.210107
Basha, N. A.; Rathinavel, T.; Sridharan, H. Activated Carbon from Coconut Shell: Synthesis and Applications. Appl. Sci. Eng. Prog. 2023, 16(2), 6152. https://doi.org/10.14416/j.asep.2022.07.001
Esvandi, Z.; Foroutan, R.; Peighambardoust, S. J.; Akbari, A.; Ramavandi, B. Uptake of Anionic and Cationic Dyes from Water Using Natural Clay and Clay/Starch/MnFe₂O₄ Magnetic Nanocomposite. Surf. Interfaces 2020, 21, 100754. https://doi.org/10.1016/j.surfin.2020.100754
Bharathi, K. S.; Ramesh, S. T. Removal of Dyes Using Agricultural Waste as Low-Cost Adsorbents: A Review. Appl. Water Sci. 2013, 3, 773–790. https://doi.org/10.1007/s13201-013-0117-y
Emad, N.; Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of Basic Dyes from Aqueous Solution onto Activated Carbons. Chem. Eng. J. 2008, 135(3), 174–184. https://doi.org/10.1016/j.cej.2007.02.023
Laktif, T.; Lakhmiri, R.; Albourine, A. Salsola tetragona as a New Low-Cost Adsorbent for Water Treatment: Highly Effective Adsorption of Crystal Violet. Int. J. Phytoremediation 2024, 26, 1691–1700. https://doi.org/10.1080/15226514.2024.2349703
Sattar, M.; Hayeeye, F.; Chinpa, W.; Sirichote, O. Preparation and Characterization of Polysulfone/Activated Carbon Composite Beads. Appl. Mech. Mater. 2014, 625, 106–109. https://doi.org/10.4028/www.scientific.net/AMM.625.106
Ghazali, A.; Shirani, M.; Semnani, A.; Zare-Shahabadi, V.; Nekoeini, M. Optimization of Crystal Violet Adsorption onto Date Palm Leaves as a Potent Biosorbent Using Response Surface Methodology and Ant Colony Optimization. J. Environ. Chem. Eng. 2018, 6, 3942–3950. https://doi.org/10.1016/j.jece.2018.05.043
Hayeeye, F.; Benhawan, A.; Sattar, M. Adsorption Efficiency of Batik Dye by Modified Dialium cochinchinense Activated Carbon Beads: Kinetics and Thermodynamics. Desalin. Water Treat. 2022, 269, 200–211. https://doi.org/10.5004/dwt.2022.28751
Jia, Y. F.; Xiao, B.; Thomas, K. M. Adsorption of Metal Ions on Nitrogen Surface Functional Groups in Activated Carbons. Langmuir 2002, 18, 470–478. https://doi.org/10.1021/la011161z
Hayeeye, F.; Sattar, M.; Chinpa, W.; Sirichote, O. Kinetics and Thermodynamics of Rhodamine B Adsorption by Gelatin/Activated Carbon Composite Beads. Colloids Surf., A 2017, 513, 259–266. https://doi.org/10.1016/j.colsurfa.2016.10.052
Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Kungl. Svenska Vetenskapsakad. Handl. 1898, 24, 1–39.
Ho, Y. S.; McKay, G. Pseudo-Second-Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
Langmuir, I. Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. https://doi.org/10.1021/ja02242a004
Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. https://doi.org/10.1007/BF01813604
Al-Shehri, A.; Almudaifer, E. A.; Alorabi, A. Q.; Alanazi, H. S.; Alkorbi, A. S.; Alharthi, F. A. Effective Adsorption of Crystal Violet from Aqueous Solutions: Equilibrium, Mechanism Studies, and Modeling Analysis. Environ. Pollut. Bioavailability 2021, 33(1), 214–226. https://doi.org/10.1080/26395940.2021.1960199
Dubinin, M. M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with an Energetically Nonuniform Surface. Chem. Rev. 1960, 60, 235–266. https://doi.org/10.1021/cr60204a006
Brunauer, S.; Skalny, J.; Bodor, E. E. Adsorption on Nonporous Solids. J. Colloid Interface Sci. 1969, 30(4), 546–552. https://doi.org/10.1016/0021-9797(69)90423-8
Zeid, A.; Othman, A. Fundamental Aspects of Silicate Mesoporous Materials: A Review. Materials 2015, 8(12), 2874–2902. https://doi.org/10.3390/ma5122874
Broekhoff, J. C. Mesopore Determination from Nitrogen Sorption Isotherms: Fundamentals, Scope, and Limitations. Stud. Surf. Sci. Catal. 1979, 36, 63–84.
Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems. Pure Appl. Chem. 1985, 57, 603–619. https://doi.org/10.1351/pac198557040603
Abebe, B.; Murthy, H. A.; Amare, E. Summary on Adsorption and Photocatalysis for Pollutant Remediation: A Mini-Review. J. Encapsulation Adsorpt. Sci. 2018, 8, 225–255. https://doi.org/10.4236/jeas.2018.84012
McEnaney, B.; Schüth, F.; Sing, K. S. W.; Weitkamp, J. Handbook of Porous Solids; Wiley-VCH: Weinheim, Germany, 2002; Vol. 1.
Azargohar, R. Production of Activated Carbon and Its Catalytic Application for Oxidation of Hydrogen Sulphide; Ph.D. Thesis, University of Saskatchewan, 2009.
Jamka, Z.; Mohammed, W. Feasibility of Modified Chitosan Beads for Nitrate Adsorption from Aqueous Solution. J. Ecol. Eng. 2023, 24(2), 265–278. https://doi.org/10.12911/22998993/156886
Zhou, J.; Sun, Q. Sodium Alginate/Modified Bentonite Composite Beads for Adsorptive Removal of Norfloxacin. Polymers 2022, 14(19), 3984–4001. https://doi.org/10.3390/polym14193984
Ngamsurach, P.; Namwongsa, N.; Praipipat, P. Synthesis of ZnO-Modified Chitosan Materials for Pb(II) Removal. Sci. Rep. 2022, 12, 17184. https://doi.org/10.1038/s41598-022-22182-4
Hayeeye, F.; Sattar, M. Removal of Crystal Violet by Activated Carbon from Rubber Fruit Pericarp and Bagasse. Desalin. Water Treat. 2020, 202, 420–434. https://doi.org/10.5004/dwt.2020.26152
Asaad, H. F.; Elhadidly, H. Production of Activated Carbons from Waste Carpets for Methylene Blue Adsorption. J. Environ. Chem. Eng. 2017, 5, 955–963. https://doi.org/10.1016/j.jece.2017.01.003
Ghaedi, M.; Ansari, A.; Habibi, M. H.; Asghari, A. R. Removal of Malachite Green Using ZnO Nanoparticles Loaded on Activated Carbon. J. Ind. Eng. Chem. 2014, 20, 17–28. https://doi.org/10.1016/j.jiec.2013.04.031
Porkodi, K.; Vasanth, K. K. Modeling and Simulation of Dye Sorption onto Jute Fiber Carbon. J. Hazard. Mater. 2007, 143, 311–327. https://doi.org/10.1016/j.jhazmat.2006.09.029
Xiao, W.; Garba, Z. N.; Sun, S.; Lawan, I.; Wang, L.; Lin, M.; Yuan, Z. Activated Carbon from White Sugar for Rhodamine B Adsorption. J. Clean. Prod. 2020, 253, 119989. https://doi.org/10.1016/j.jclepro.2020.119989
Ghaedi, M.; Ghaedi, A. M.; Negintaji, E.; Ansari, A.; Vafaei, A.; Rajabi, M. Random Forest Model for Bromophenol Blue Removal Using Activated Carbon. J. Ind. Eng. Chem. 2014, 20, 1793–1803. https://doi.org/10.1016/j.jiec.2013.08.033
Dada, A. O.; Olalekan, A. P.; Olatunya, A. M. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich Isotherm Studies of Zn²⁺ Adsorption. J. Appl. Chem. 2012, 3(1), 38–45. https://doi.org/10.9790/5736-0313845
Azad, M. S.; Mohd, S. H.; Shahinuzzaman, M.; Azhari, S. Removal of Copper from Aqueous Solution Using Rice Husk Activated Carbon. Sci. Technol. Asia 2022, 27(3), 69–84.
Arabzadeh, S.; Ghaedi, M.; Ansari, A.; Taghizadeh, F.; Rajabi, M. Removal of Methylene Blue Using NiO and Pd Nanoparticle-Loaded Activated Carbon. Hum. Exp. Toxicol. 2015, 34, 153–169. https://doi.org/10.1177/0960327114532383
Boulder, B.; Rida, K. Adsorption of Rhodamine B, Methyl Orange, and Phenol by Magnetic Activated Carbon. Mater. Sci. Eng. B 2024, 307, 117502. https://doi.org/10.1016/j.mseb.2024.117502
Belcaid, A.; Beakou, B. H.; Bouhsina, S.; Anouar, A. Adsorptive Removal of Dyes by Cassava Peel Biochar. Biofuels, Bioprod. Biorefin. 2024, 14, 7783–7806. https://doi.org/10.1007/s13399-022-02928-w
Sewu, D. D.; Boakye, P.; Woo, S. H. Adsorption of Cationic Dye by Biochar from Korean Cabbage Waste. Bioresour. Technol. 2017, 224, 206–213. https://doi.org/10.1016/j.biortech.2016.11.009
Al-Shehri, H. S.; Almudaifer, E. A.; Alorabi, Q.; Alanazi, H. S.; Alkorbi, A. S.; Alharthi, F. A. Effective Adsorption of Crystal Violet from Aqueous Solutions. Environ. Pollut. Bioavailability 2021, 33(1), 214–226. https://doi.org/10.1080/26395940.2021.1960199
Rajeswari, K. M.; Revanth, T.; Anirudh, A.; Prasad, B. Removal of Crystal Violet Using Water Hyacinth. Resour.-Effic. Technol. 2017, 3, 71–77. https://doi.org/10.1016/j.reffit.2017.01.009