Effects of Dietary Insect Powder Supplementation on Hematological Parameters of Common Carp (Cyprinus carpio) Fry
Main Article Content
Abstract
The increasing demand for sustainable protein sources in aquaculture has driven research into insect meal as an alternative to fishmeal for fish nutrition. This study evaluated the effects of dietary insect powder supplementation on blood parameters and liver enzymes in common carp (*Cyprinus carpio*) fry to assess both efficacy and safety of this protein source. Seventy-two common carp fry (average weight 16.65±0.01 g) were randomly distributed into four treatments with six fish per replicate: T0 (control diet), T1 (1% insect powder), T2 (2% insect powder), and T3 (3% insect powder). The insect powder consisted of equal proportions of dried grasshopper and mealworms mixed with a commercial floating diet (30% crude protein, 412 kcal/g gross energy). After 60 days of feeding, blood samples were collected to analyze hematological parameters including red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelets, and white blood cells, as well as liver enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). All insect powder supplementation treatments significantly improved blood parameters compared to the control, with treatment effectiveness following the order T3 > T2 > T1 > T0. Treatment T3 achieved the highest values for red blood cells, hemoglobin, and hematocrit. Notably, liver enzyme levels showed no significant differences between treatments, indicating the absence of hepatotoxicity. The results demonstrate that insect powder supplementation, particularly at 3% inclusion level, effectively enhances hematological parameters in common carp fry without causing liver damage, supporting its potential as a safe and beneficial alternative protein source in aquaculture feeds.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022.
Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146-158. https://doi.org/10.1016/j.aquaculture.2008.08.015
Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120-128. https://doi.org/10.1016/j.tifs.2012.06.003
Shepherd, C.J.; Jackson, A.J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 2013, 83, 1046-1066. https://doi.org/10.1111/jfb.12224
Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Soto, D.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551-563. https://doi.org/10.1038/s41586-021-03308-6
Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551-579. https://doi.org/10.1111/j.1365-2109.2007.01704.x
Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: Future prospects for food and feed security. FAO For. Pap. 2013, 171, 1-201.
Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422-423, 193-201. https://doi.org/10.1016/j.aquaculture.2013.12.024
Sankian, Z.; Khosravi, S.; Kim, Y.O.; Lee, S.M. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juvenile. Aquaculture 2018, 496, 79-87. https://doi.org/10.1016/j.aquaculture.2018.07.012
Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. https://doi.org/10.1371/journal.pone.0014445
Gasco, L.; Finke, M.; van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1-4. https://doi.org/10.3920/JIFF2018.x001
Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080-1103. https://doi.org/10.1111/raq.12281
Haney, D.C.; Hursh, D.A.; Mix, M.C.; Winton, J.R. Physiological and hematological changes in chum salmon artificially infected with erythrocytic necrosis virus. J. Aquat. Anim. Health 1992, 4, 48-57. https://doi.org/10.1577/1548-8667(1992)004<0048:PAHCIC>2.3.CO;2
Fazio, F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture 2019, 500, 237-242. https://doi.org/10.1016/j.aquaculture.2018.10.030
Luskova, V. Annual cycles and normal values of hematological parameters in fishes. Acta Sci. Nat. Brno 1997, 31, 70.
Gabriel, U.U.; Akinrotimi, O.A.; Bekibele, D.O.; Onunkwo, D.N.; Anyanwu, P.E. Locally produced fish feed: Potentials for aquaculture development in sub-Saharan Africa. Afr. J. Agric. Res. 2007, 2, 287-295.
FAO. Cyprinus carpio (Linnaeus, 1758). Cultured Aquatic Species Information Programme; FAO: Rome, Italy, 2023.
Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1-42. https://doi.org/10.2307/3001478
Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer: Boston, MA, USA, 1998. https://doi.org/10.1007/978-1-4615-5407-3
Hargreaves, J.A.; Tucker, C.S. Managing ammonia in fish ponds. SRAC Publ. 2004, 4603, 1-8.
Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication; 2011. www.fishbase.org
Salman, M.H.M.A. The Basics of Fish Farming and Production, 2nd ed.; University of Basra Press: Basra, Iraq, 2000; p. 396.
Salman, N.A.; Al-Mahdawi, G.J.; Kittan, S.A.; Al-Rudaing, A.M.; Habah, M.K. Accilimation of common carp, Bunni and Gattan to the drainage water Saddam's River using concrete ponds. Mar. Mesopotamica 1993, 8, 190-201.
Food and Agriculture Organization (FAO). Report of the symposium on new developments in the utilization of heated effluent and of recirculation system for intensive aquaculture, Stavanger, 29-30 May 1980. EIFAC/T39; FAO: Rome, Italy, 1981.
Al-Dubaikal, A.Y. A Nutritional and Metabolic Study of Young Brown Carp Barbus sharpeyi, Catfish B. xanthopterus, and Common Carp Cyprinus carpio L. under Laboratory Conditions. Ph.D. Thesis, University of Basra, Basra, Iraq, 1996.
Schmidt, A.; Call, L.; Macheiner, L.; Mayer, H.K. Determination of vitamin B12 in four edible insect species by immunoaffinity and ultra-high performance liquid chromatography. Food Chem. 2018, 281, 124-129. https://doi.org/10.1016/j.foodchem.2018.12.039
Koury, M.J.; Ponka, P. New insights into erythropoiesis: The roles of folate, vitamin B12, and iron. Annu. Rev. Nutr. 2004, 24, 105-131. https://doi.org/10.1146/annurev.nutr.24.012003.132306
Jauncey, K.; Ross, B. A Guide to Tilapia Feeds and Feeding Ins. Aquaculture, Univ. Sterling, FK94 La, Scotland, U. K. 1982; p 111.
Hanif, N.I.; Apriantini, N.A.; Endrawati, N.Y.C. Review: Nutritional contents and bioactive compounds of mealworm (Tenebrio molitor) as edible insect. J. Ilmu Prod. Teknol. Hasil Peternak. 2023, 11, 153-162. https://doi.org/10.29244/jipthp.11.3.153-162
Tiglis, M.; Grintescu, I.C.; Neagu, T.P.; Grintescu, I.M. Iron and erythropoiesis – Optimizing the link. Mod. Med. 2020, 27, 1-8. https://doi.org/10.31689/rmm.2020.27.2.91
Hrubec, T.C.; Smith, S.A. Hematology of fishes. In Schalm's Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Blackwell Publishing Ltd.: Singapore, 2010; pp. 994-1003.
Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802-823. https://doi.org/10.1002/mnfr.201200735
Binns, H.C.; Alipour, E.; Sherlock, C.E.; Nahid, D.S.; Whitesides, J.F.; Cox, A.O.; Furdui, C.M.; Marrs, G.S.; Kim-Shapiro, D.B.; Cordy, R.J. Amino acid supplementation confers protection to red blood cells before Plasmodium falciparum bystander stress. Blood Adv. 2024, 8, 2552-2564. https://doi.org/10.1182/bloodadvances.2023010820
Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 2016, 17, 603. https://doi.org/10.3390/ijms17050603
Mousavi, S.; Zahedinezhad, S.; Loh, J.Y. A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res. 2020, 12, 100-115.
Lieberman, S.; Enig, M.G.; Preuss, H.G. A review of monolaurin and lauric acid: Natural virucidal and bactericidal agents. Altern. Complement. Ther. 2006, 12, 310-314. https://doi.org/10.1089/act.2006.12.310
Zhan, W.; Peng, H.; Xie, S.; Deng, Y.; Zhu, T.; Cui, Y.; Cao, H.; Tang, Z.; Jin, M.; Zhou, Q. Dietary lauric acid promoted antioxidant and immune capacity by improving intestinal structure and microbial population of swimming crab (Portunus trituberculatus). Fish Shellfish Immunol. 2024, 151, 109739. https://doi.org/10.1016/j.fsi.2024.109739
Balint, T.; Ferenczy, J.; Katai, F.; Kiss, I.; Kroazc, L.; Lang, G.; Polyhos, C.; Szabo, I.; Nemesok, J. Similarities and differences between the massive eel (Anguilla anguilla) devastation that occurs in lake Balaton in 1991 and 1995. Ecotoxicol. Environ. Saf. 1997, 37, 17-23. https://doi.org/10.1006/eesa.1996.1509
Al-Ghanim, K.A. Effect of cypermethrin toxicity on enzyme activities in the freshwater fish Cyprinus carpio L. Afr. J. Biotechnol. 2014, 13, 1169-1173. https://doi.org/10.5897/AJB12.1724
Madibana, M.J.; Mwanza, M.; Lewis, B.R.; Fouché, C.H.; Toefy, R.; Mlambo, V. Black soldier fly larvae meal as a fishmeal substitute in juvenile dusky kob diets: Effect on feed utilization, growth performance, and blood parameters. Sustainability 2020, 12, 9460. https://doi.org/10.3390/su12229460
Zou, Q.; Huang, Y.; Cao, J.; Zhao, H.; Wang, G.; Li, Y.; Pan, Q. Effects of replacing fishmeal with American cockroach meal on growth performance, digestive enzyme activities, and hepatic antioxidant capacity in juvenile common carp (Cyprinus carpio). Aquac. Nutr. 2024, 30, 1-12.
Lu, D.; Geng, T.; Hou, C.; Huang, Y.; Qin, G.; Guo, X. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene 2016, 583, 29-35. https://doi.org/10.1016/j.gene.2016.02.045
Gasco, L.; Finke, M.; van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1-4. https://doi.org/10.3920/JIFF2018.x001