Enhancement of Bioactive Compounds and Nutrient Content in Rosemary (Salvia rosmarinus) Using Nano-Magnesium and NPK Fertilization: A GC-MS Analysis
Main Article Content
Abstract
This study investigated the effects of nano-magnesium and unbalanced NPK fertilizers on nutrient content and bioactive compounds in rosemary (Salvia rosmarinus) during the 2021-2022 growing season in Al-Qadisiyah, Iraq. Nine treatments were applied: control, nano-magnesium (1 and 2 g/L), NPK (1 and 2 g/L), and their combinations, with three replications each. Foliar applications were administered to six-week-old seedlings, with harvest occurring 30 days post-treatment. Nutrient analysis revealed that the nano-magnesium (1 g/L) + NPK (2 g/L) combination yielded the highest nitrogen content (1.96%), while nano-magnesium alone (2 g/L) produced the lowest (0.98%). Phosphorus peaked at 0.277% with nano-magnesium (2 g/L) versus 0.100% in controls. Potassium reached 1.211% with combined nano-magnesium + NPK (both 1 g/L), while NPK alone (2 g/L) showed the minimum (0.588%). Total lipids increased from 0.852% (control) to 1.038% (nano-magnesium + NPK, both 2 g/L). Carbohydrate content varied dramatically, with the highest value of 13.77% (nano-magnesium 2 g/L + NPK 1 g/L) contrasting sharply with 4.675% (both fertilizers at 2 g/L). GC-MS profiling revealed substantial variation in bioactive compounds: control plants contained 16 compounds, while treatments ranged from 2 compounds (nano-magnesium at 2 g/L alone) to 36 compounds (NPK at 1 g/L + nano-magnesium at 2 g/L). n-hexadecanoic acid emerged as the predominant compound across treatments, ranging from 3.26% to 35.17%. These findings demonstrate that nano-magnesium and NPK fertilization significantly enhance the nutritional and phytochemical profiles of rosemary, with combined applications showing synergistic effects on the diversity of bioactive compounds.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Arnold, N.; Valentini, G.; Bellomaria, B.; Hocine, L. Comparative study of the essential oils from Rosmarinus eriocalyx Jordan & Fourr. from Algeria and R. officinalis L. from other countries. J. Essent. Oil Res. 1997, 9, 167–175. https://doi.org/10.1080/10412905.1997.9699454
Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Sanches-Silva, A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. https://doi.org/10.1016/j.tifs.2015.07.015
Benaim, G.; Sanders, J.M.; Garcia-Marchán, Y.; Colina, C.; Lira, R.; Caldera, A.R.; Urbina, J.A. Amiodarone has intrinsic anti-trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem. 2006, 49, 892–899. https://doi.org/10.1021/jm050691f
Begum, A.; Sandhya, S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–74.
Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 2013, 31, 189–195. https://doi.org/10.1016/j.foodcont.2012.09.022
Stefanovits-Bányai, É. Antioxidant effect of various rosemary (Rosmarinus officinalis L.) clones. Acta Biol. Szeged. 2003, 47, 111–113.
Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Marín, M.P.; Del Río, J.A.; Ibarra, I. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Postulation of a biosynthetic pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. https://doi.org/10.1021/jf040078p
Mousavi, S.R.; Rezaei, M. Nanotechnology in agriculture and food production. J. Appl. Environ. Biol. Sci. 2011, 1, 414–419.
Kumar, K. Nanobiotechnology and its implementation in agriculture. J. Adv. Bot. Zool. 2013, 1, 1–3.
Naderi, M.R.; Danesh-Shahraki, A. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 2013, 5, 2229–2232.
Mohamed, S.; El-Ghait, E.M.A.; El Shayeb, N.S.; SA, G.Y.; Shahin, A.A. Effect of some fertilizers on improving growth and oil productivity of basil (Ocimum basilicum, L.) cv. Genovese plant. Egypt. J. Appl. Sci. 2015, 30, 384–399.
Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995.
Beale, S.I. Enzymes of chlorophyll biosynthesis. Photosynth. Res. 1999, 60, 43–73. https://doi.org/10.1023/A:1006297731456
Stern, K.R.; Janseky, S.; Bidlack, J.E. Introduction to Plant Biology; McGraw-Hill Higher Education: New York, NY, USA, 2003.
Delfani, M.; Baradarn Firouzabadi, M.; Farrokhi, N.; Makarian, H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 2014, 45, 530–540. https://doi.org/10.1080/00103624.2013.863911
Singh, M.D.; Gautam, C.; Patidar, O.P.; Meena, H.M.; Prakasha, G.; Vishwajith. Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int. J. Agric. Sci. 2017, 9, 3831–3833.
Sadras, V.O. The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res. 2006, 95, 13–29. https://doi.org/10.1016/j.fcr.2005.01.020
Liu, Y.; Pan, X.; Li, J. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agron. Sustain. Dev. 2015, 35, 83–93. https://doi.org/10.1007/s13593-014-0259-9
Ling, F.; Silberbush, M. Response of maize to foliar vs. soil application of nitrogen–phosphorus–potassium fertilizers. J. Plant Nutr. 2002, 25, 2333–2342. https://doi.org/10.1081/PLN-120014698
Singh, J.; Singh, M.; Jain, A.; Bhardwaj, S.; Singh, A.; Singh, D.; Dubey, S. An introduction of plant nutrients and foliar fertilization: A review. In Precision Farming: A New Approach; Daya Publishing Co.: New Delhi, India, 2013.
Girma, K.; Martin, K.; Freeman, K.; Mosali, J.; Teal, R.; Raun, W.R.; Arnall, D. Determination of optimum rate and growth stage for foliar-applied phosphorus in corn. Commun. Soil Sci. Plant Anal. 2007, 38, 1137–1154. https://doi.org/10.1080/00103620701328016
Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982.
Cresser, M.; Parsons, J.W. Sulphuric-perchloric acid digestion of plant material for the determination of nitrogen, phosphorus, potassium, calcium and magnesium. Anal. Chim. Acta 1979, 109, 431–436. https://doi.org/10.1016/S0003-2670(01)84273-2
Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Ed.; Agronomy Monographs 9; ASA-SSSA: Madison, WI, USA, 1982; pp. 403–430.
Horneck, D.A.; Hanson, D. Determination of potassium and sodium by flame emission spectrophotometry. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Washington, DC, USA, 1998; pp. 157-164.
Gessner, M.O.; Neumann, P.T. Total lipids. In Methods to Study Litter Decomposition; Graça, M.A.S., Bärlocher, F., Gessner, M.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 91–95. https://doi.org/10.1007/1-4020-3466-0_13
Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.I.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. https://doi.org/10.1016/j.ab.2004.12.001
Muhit, M.A.; Tareq, S.M.; Apu, A.S.; Basak, D.; Islam, M.S. Isolation and identification of compounds from the leaf extract of Dillenia indica Linn. Bangladesh Pharm. J. 2010, 13, 49–53.
Jalali-Heravi, M.; Moazeni, R.S.; Sereshti, H. Analysis of Iranian rosemary essential oil: Application of gas chromatography-mass spectrometry combined with chemometrics. J. Chromatogr. A 2011, 1218, 2569-2576. https://doi.org/10.1016/j.chroma.2011.02.048
Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104
Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. https://doi.org/10.1021/acs.jafc.7b02178
Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. https://doi.org/10.1038/s41565-018-0131-1
Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-fertilizers and their smart delivery system. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 81–101. https://doi.org/10.1007/978-3-319-14024-7_4
Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. https://doi.org/10.1081/PLN-100106981
Rietra, R.P.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. https://doi.org/10.1080/00103624.2017.1407429
Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. https://doi.org/10.1023/A:1016091118585
Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop J. 2016, 4, 83–91. https://doi.org/10.1016/j.cj.2015.11.003
Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. https://doi.org/10.1016/j.tplants.2006.10.007
Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25.
Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. https://doi.org/10.1111/j.1747-0285.2012.01418.x
Ma, J.F.; Taketa, S.; Yang, Z.M. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 2000, 122, 687–694. https://doi.org/10.1104/pp.122.3.687
Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiol. Plant. 2015, 37, 139. https://doi.org/10.1007/s11738-015-1870-3
Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. https://doi.org/10.1021/jf104517j
Kunst, L.; Samuels, L. Plant cuticles shine: Advances in wax biosynthesis and export. Curr. Opin. Plant Biol. 2009, 12, 721–727. https://doi.org/10.1016/j.pbi.2009.09.009
Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. https://doi.org/10.1146/annurev.arplant.59.103006.093219
Santos, C.C.; Salvadori, M.S.; Mota, V.G.; Costa, L.M.; de Almeida, A.A.; de Oliveira, G.A. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J. 2013, 2013, 949452. https://doi.org/10.1155/2013/949452
Bhardwaj, R.; Yadav, A.; Sharma, P.; Sharma, R.A. Combination of diosgenin with conjugated linoleic acid attenuates inflammation via modulation of PI3K/Akt/NFκB pathway in colon cancer. Mol. Nutr. Food Res. 2014, 58, 2180–2188.
Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2015.
Maathuis, F.J. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. https://doi.org/10.1016/j.pbi.2009.04.003
Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. https://doi.org/10.4161/psb.6.11.17613
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. https://doi.org/10.3390/molecules23040762
Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner's Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6
Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. https://doi.org/10.3389/fchem.2017.00078
Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061
Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. https://doi.org/10.3390/ijms14047370
Fattahi, B.; Nazeri, V.; Kalantari, S.; Bonfill, M.; Fattahi, M. Essential oil variation in wild-growing populations of Salvia reuterana Boiss. collected from Iran: Using GC-MS and multivariate analysis. Ind. Crops Prod. 2016, 81, 180–190. https://doi.org/10.1016/j.indcrop.2015.11.061
Bajpai, V.K.; Agrawal, P. Studies on phytochemicals, antioxidant, free radical scavenging and lipid peroxidation inhibitory effects of Trachyspermum ammi seeds. Indian J. Pharm. Educ. Res. 2015, 49, 58–65. https://doi.org/10.5530/ijper.49.1.8
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. https://doi.org/10.1016/j.fct.2007.09.106