การพัฒนาเซลล์เชื้อเพลิงชนิดออกไซด์ของแข็งแบบใหม่ขนาดพกพา
Main Article Content
บทคัดย่อ
เซลล์เชื้อเพลิงเป็นเทคโนโลยีพลังงานทางเลือกที่มีศักยภาพในการแก้ปัญหาพลังงานขาดแคลนในอนาคตเซลล์เชื้อเพลิงชนิดออกไซด์ของแข็งสามารถใช้แก๊สธรรมชาติเป็นเชื้อเพลิงได้ และไม่จำเป็นต้องใช้แพลตตินัม ที่ราคาแพงเป็นตัวเร่งปฏิกิริยา ทำให้ลดต้นทุนในการผลิตไฟฟ้าด้วยเซลล์เชื้อเพลิงได้ เซลล์เชื้อเพลิงแบบพกพาถูกพัฒนาขึ้นเพื่อผลิตไฟฟ้าขนาดต่ำกว่า 1 kW นักวิจัยได้ผลิตเซลล์ที่ให้ค่าความหนาแน่นกำลังไฟฟ้าสูงถึง 348 mW cm-2 และพบว่าค่าความหนาแน่นกำลังไฟฟ้าจะสูงขึ้นตามอุณหภูมิในการทำงานชนิดของเชื้อเพลิง (มีเทน/อากาศ โพรเพน/อากาศ และ บิวเทน/อากาศ) แทบจะไม่ส่งผลกระทบต่อค่าความหนาแน่นกำลังไฟฟ้ามากนักเมื่อเทียบกับอิทธิพลของอุณหภูมิ
Article Details
ประเภทบทความ
บทความวิชาการ
เอกสารอ้างอิง
[1] Kulikovsky, A.A. (2010). Chapter 1 - Fuel cell basis. Analytical Modelling of Fuel Cells. Amsterdam: Elsevier.
[2] Larminie, J. and Dicks, A. (2000). Fuel cell systems explained (3rd Edition). United Kingdom: John Wiley.
[3] Marthosa, S. (2012). Improvement of electrocatalyst performance in hydrogen fuel cells by multiscale modelling.
Doctoral thesis. University of Manchester.
[4] Kwanmuang, S., Praneenararat, T., Piang-ngok, A. and Limsookniran, W. (2016). Fuel Cells: Energy for future.
Accessed by February 2016. From https://www.rmutphysics.com/physics/oldfront/97/fuelcell/fuel-cell.htm.
[5] Barbir, F. (2005). PEM Fuel Cells Theory and Practice. Elsevier Academic Press.
[6] Rousseau, S., Coutanceau, C., Lamy, C. and Léger, J.M. (2006). “Direct Ethanol Fuel Cell (DEFC):
Electrical performances and reaction products distribution under operating conditions with different
platinum-based anodes”, Journal of Power Sources. 158(1), 18-24.
[7] Antolini, E. (2007). “Catalysts for direct ethanol fuel cells”, Journal of Power Sources. 170(1), 1-12.
[8] Zhou, W.J., Song, S.Q., Li, W.Z., Zhou, Z.H., Sun, G.Q., Xin, Q., Douvartzides, S. and Tsiakaras. P. (2005).
“Direct ethanol fuel cells based on Pt/Sn anodes: the effect of Sn content on the fuel cell performance”,
Journal of Power Sources. 140(1), 50-58.
[9] Boonpasawai, S. (2005). Fuel cell and application of fuel cells in 21st century. Accessed by February 2016.
From https://design.ipst.ac.th/docu/photo/D006.pdf.
[10] Spacil, H.S. (1970). Electrical device including nickel-containing stabilised zirconia electrode. US Patent.
[11] Boer, Bd., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H. (2000). “The effect of the presence of fine
YSZ particles on the performance of porous nickel electrodes”, Solid State Ionics. 127, 269 - 276.
[12] Costa-Nunes, O., Gorte, R.J. and Vohs, J.M. (2005). “Comparison of the performance of Cu–CeO2–YSZ
and Ni–YSZ composite SOFC anodes with H2, CO and syngas”, Journal of Power Source. 141, 241 - 249.
[13] Mukundan, R., Brosha, E.L. and Garzon, F.H. (2004). “Sulfur tolerant anodes for SOFCs”, Electrochemical
Solid-State Letter. 7, (A5 - A7).
[14] Kao, W-X., Lee, M-C., Chang, Y-C., Lin, T-N., Wang, C-H. and Chang, J-C. (2010). “Fabrication and
evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the
composite cathode of La0.8Sr0.2MnO3-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3”, Journal of Power Source.
195, 6468 - 6472.
[15] Veen, A.Cv., Rebeilleau, M., Farrusseng, D. and Mirodatos, C. (2003). “Studies on the performance stability
of mixed conducting BSCFO membranes in medium temperature oxygen permeation”,
Chemistry Communication. 9, 32 – 33.
[16] Jiang, S.P. (2008). “Development of lanthanum strontium manganite perovskite cathode materials of solid
oxide fuel cells: a review”, Journal of Material Science. 43, (6799 – 6833).
[17] Wincewicz, K.C. and Cooper, J.S. (2005). “Taxonomies of SOFC material and manufacturing alternatives”,
Journal of Power Source. 140, 280 - 296.
[18] Timakul, P. and Aungkavattana, P. (2007). Hydrogen and Fuel cells: New alternative energy for tomorrow.
Accessed by February 2016. From https://www.technologymedia.co.th/column/
columnview.asp?id=202.
[19] Wongvaranon, K. (2013). Fuel cell: Clean energy from hydrogen. Accessed by January 2016.
From https://www.dockyard.navy.mi.th/doced/Homepage/sontetset_files/varasan_dock56/18.pdf.
[20] Prommet, P. (2015). “The fuel cells alternative energy for the future”, Princess of Naradhiwas University
Journal. 7(2), 157-170.
[21] Protonex @ Ballard® company. (2016). Solid Oxide Fuel Cell Technlogy. Accessed by February 2016.
From https://www.protonex.com/technology/solid-oxide-fuel-cell/.
[22] Wang, Y.G., Sun, L.L., Luo, L.H., Wu, Y.F., Liu L.L. and Shi, J.J. (2014). “The study of portable direct-flame
solid oxide fuel cell (DF-SOFC) stack with butane fuel”, Journal of Fuel Chemistry and Technology.
42(9), 1135-1139.
[23] Kronemayer, H., Barzan, D., Horiuchi, M., Suganuma, S., Tokutake, Y., Schulz, C. and Bessler, G. (2007).
“A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane and butane”, Journal of
Power Sources. 166(1), 120-126.
[24] Hao, Y., Shao, Z., Mederos, J., Lai, W., Goodwin, D.G. and Haile, S.M. (2006). “Recent advances in single-chamber
fuel-cells: Experiment and modeling”, Solid State Ionics. 177(19-25), 2013-2021.
[25] Gödickemeier, M. and Gauckler, L.J. (1998). “Engineering of solid oxide fuel cells with ceria-based
electrolytes”, Journal of The Electrochemical Society. 145(2), 414-421.
[26] Zhu, X., Wei, B., Lü, Z., Yang, L., Huang, X., Zhang, Y. and Liu, M. (2012). “A direct flame solid oxide
fuel cell for potential combined heat and power generation”, International Journal of Hydrogen
Energy. 37(10), 8621-8629.
[2] Larminie, J. and Dicks, A. (2000). Fuel cell systems explained (3rd Edition). United Kingdom: John Wiley.
[3] Marthosa, S. (2012). Improvement of electrocatalyst performance in hydrogen fuel cells by multiscale modelling.
Doctoral thesis. University of Manchester.
[4] Kwanmuang, S., Praneenararat, T., Piang-ngok, A. and Limsookniran, W. (2016). Fuel Cells: Energy for future.
Accessed by February 2016. From https://www.rmutphysics.com/physics/oldfront/97/fuelcell/fuel-cell.htm.
[5] Barbir, F. (2005). PEM Fuel Cells Theory and Practice. Elsevier Academic Press.
[6] Rousseau, S., Coutanceau, C., Lamy, C. and Léger, J.M. (2006). “Direct Ethanol Fuel Cell (DEFC):
Electrical performances and reaction products distribution under operating conditions with different
platinum-based anodes”, Journal of Power Sources. 158(1), 18-24.
[7] Antolini, E. (2007). “Catalysts for direct ethanol fuel cells”, Journal of Power Sources. 170(1), 1-12.
[8] Zhou, W.J., Song, S.Q., Li, W.Z., Zhou, Z.H., Sun, G.Q., Xin, Q., Douvartzides, S. and Tsiakaras. P. (2005).
“Direct ethanol fuel cells based on Pt/Sn anodes: the effect of Sn content on the fuel cell performance”,
Journal of Power Sources. 140(1), 50-58.
[9] Boonpasawai, S. (2005). Fuel cell and application of fuel cells in 21st century. Accessed by February 2016.
From https://design.ipst.ac.th/docu/photo/D006.pdf.
[10] Spacil, H.S. (1970). Electrical device including nickel-containing stabilised zirconia electrode. US Patent.
[11] Boer, Bd., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H. (2000). “The effect of the presence of fine
YSZ particles on the performance of porous nickel electrodes”, Solid State Ionics. 127, 269 - 276.
[12] Costa-Nunes, O., Gorte, R.J. and Vohs, J.M. (2005). “Comparison of the performance of Cu–CeO2–YSZ
and Ni–YSZ composite SOFC anodes with H2, CO and syngas”, Journal of Power Source. 141, 241 - 249.
[13] Mukundan, R., Brosha, E.L. and Garzon, F.H. (2004). “Sulfur tolerant anodes for SOFCs”, Electrochemical
Solid-State Letter. 7, (A5 - A7).
[14] Kao, W-X., Lee, M-C., Chang, Y-C., Lin, T-N., Wang, C-H. and Chang, J-C. (2010). “Fabrication and
evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the
composite cathode of La0.8Sr0.2MnO3-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3”, Journal of Power Source.
195, 6468 - 6472.
[15] Veen, A.Cv., Rebeilleau, M., Farrusseng, D. and Mirodatos, C. (2003). “Studies on the performance stability
of mixed conducting BSCFO membranes in medium temperature oxygen permeation”,
Chemistry Communication. 9, 32 – 33.
[16] Jiang, S.P. (2008). “Development of lanthanum strontium manganite perovskite cathode materials of solid
oxide fuel cells: a review”, Journal of Material Science. 43, (6799 – 6833).
[17] Wincewicz, K.C. and Cooper, J.S. (2005). “Taxonomies of SOFC material and manufacturing alternatives”,
Journal of Power Source. 140, 280 - 296.
[18] Timakul, P. and Aungkavattana, P. (2007). Hydrogen and Fuel cells: New alternative energy for tomorrow.
Accessed by February 2016. From https://www.technologymedia.co.th/column/
columnview.asp?id=202.
[19] Wongvaranon, K. (2013). Fuel cell: Clean energy from hydrogen. Accessed by January 2016.
From https://www.dockyard.navy.mi.th/doced/Homepage/sontetset_files/varasan_dock56/18.pdf.
[20] Prommet, P. (2015). “The fuel cells alternative energy for the future”, Princess of Naradhiwas University
Journal. 7(2), 157-170.
[21] Protonex @ Ballard® company. (2016). Solid Oxide Fuel Cell Technlogy. Accessed by February 2016.
From https://www.protonex.com/technology/solid-oxide-fuel-cell/.
[22] Wang, Y.G., Sun, L.L., Luo, L.H., Wu, Y.F., Liu L.L. and Shi, J.J. (2014). “The study of portable direct-flame
solid oxide fuel cell (DF-SOFC) stack with butane fuel”, Journal of Fuel Chemistry and Technology.
42(9), 1135-1139.
[23] Kronemayer, H., Barzan, D., Horiuchi, M., Suganuma, S., Tokutake, Y., Schulz, C. and Bessler, G. (2007).
“A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane and butane”, Journal of
Power Sources. 166(1), 120-126.
[24] Hao, Y., Shao, Z., Mederos, J., Lai, W., Goodwin, D.G. and Haile, S.M. (2006). “Recent advances in single-chamber
fuel-cells: Experiment and modeling”, Solid State Ionics. 177(19-25), 2013-2021.
[25] Gödickemeier, M. and Gauckler, L.J. (1998). “Engineering of solid oxide fuel cells with ceria-based
electrolytes”, Journal of The Electrochemical Society. 145(2), 414-421.
[26] Zhu, X., Wei, B., Lü, Z., Yang, L., Huang, X., Zhang, Y. and Liu, M. (2012). “A direct flame solid oxide
fuel cell for potential combined heat and power generation”, International Journal of Hydrogen
Energy. 37(10), 8621-8629.