Public Health Implications of Antimicrobial-Resistant Bacteria in the U-Tapao Canal, South of Thailand: A Study of Escherichia coli and Associated Gram-Negative Bacteria
Main Article Content
Abstract
Water-borne diseases are a major global public health concern, leading to significant morbidity and mortality worldwide. In this study, E. coli and the associated culturable bacteria were investigated from 7 water sampling locations along the 26 kilometers of U-Tapao Canal, an important aquatic source in southern Thailand. Five E. coli strains were obtained from 3 water samples (3/21, prevalence of 14%). Two of five were multidrug-resistant (MDR) E. coli. One E. coli strain was resistant to imipenem, suggesting that it was a carbapenem-resistant E. coli. All five E. coli strains exhibited γ-hemolysis on blood agar and produced catalase, suggesting their virulence to some extent. Fifteen diverse bacterial strains other than E. coli were also found and classified into 12 distinct bacterial species using MALDI-TOF MS. The finding of E. coli and other bacterial species in the U-Tapao Canal in this study highlights the microbial contamination inhabiting this canal and emphasizes the potential risk of water-borne diseases among inhabitants residing in the vicinity. This study strengthens the need for systematic microbiological monitoring of water quality, promoting public health and environmental safety.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Holcomb, D. A.; Stewart, J. R. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr. Environ. Health Rep. 2020, 7, 311–324. https://doi.org/10.1007/s40572-020-00278-1
Liu, B.; Lee, C. W.; Bong, C. W.; Wang, A. J. Investigating Escherichia coli Habitat Transition from Sediments to Water in Tropical Urban Lakes. PeerJ 2024, 12, 1–22. https://doi.org/10.7717/peerj.16556
Jang, J.; Hur, H.-G.; Sadowsky, M. J.; Byappanahalli, M. N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and Public Health Implications—A Review. J. Appl. Microbiol. 2017, 123, 570–581. https://doi.org/10.1111/jam.13468
World Health Organization (WHO). Guidelines for Drinking-Water Quality. WHO Chron. 2011, 38, 104–108.
Nataro, J. P.; Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11(1), 142–201. https://doi.org/10.1128/cmr.11.1.142
Themphachana, M.; Kongphene, S.; Rattanachuay, P.; Khianngam, S.; Singkhamanan, K.; Sukhumungoon, P. Molecular Characterization of Virulence and Antimicrobial Susceptibility Profiles of Uropathogenic Escherichia coli from Patients in a Tertiary Hospital, Southern Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46(6), 1021–1030.
Chandran, A.; Mazumder, A. Pathogenic Potential, Genetic Diversity, and Population Structure of Escherichia coli Strains Isolated from a Forest-Dominated Watershed (Comox Lake) in British Columbia, Canada. Appl. Environ. Microbiol. 2015, 81, 1788–1798. https://doi.org/10.1128/AEM.03738-14
Sukhumungoon, P.; Nakaguchi, Y.; Ingviya, N.; Pradutkanchana, J.; Iwade, Y.; Seto, K.; Son, R.; Nishibuchi, M.; Vuddhakul, V. Investigation of stx2⁺ eae⁺ Escherichia coli O157:H7 in Beef Imported from Malaysia to Thailand. Int. Food Res. J. 2011, 18(1), 381–386.
Royal Irrigation Department, Ministry of Agriculture and Cooperatives. General Features of the U-Taphao River Basin. http://irrigation.rid.go.th/rid16/sip/linkleft/knowledge_file/autapao/1-physical_autapao.pdf (accessed June 24, 2025).
Marin, M.; Ruiz, A.; Iglesias, C.; Quiroga, L.; Cercennado, E.; Martin-Rabadan, P.; Bouza, E.; Rodriguez-Sanchez, B. Identification of Nocardia Species from Clinical Isolates Using MALDI-TOF Mass Spectrometry. Clin. Microbiol. Infect. 2018, 24(12), 1342.e5–1342.e8. https://doi.org/10.1016/j.cmi.2018.06.014
Rodríguez-Sánchez, B.; Marín, M.; Sánchez-Carrillo, C.; Cercenado, E.; Ruiz, A.; Rodríguez-Créixems, M.; Bouza, E. Improvement of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Difficult-to-Identify Bacteria and Its Impact on the Workflow of a Clinical Microbiology Laboratory. Diagn. Microbiol. Infect. Dis. 2014, 79(1), 1–6. https://doi.org/10.1016/j.diagmicrobio.2014.01.021
Sukhumungoon, P.; Nuwilai, L.; Boontaworn, M.; Rattanachuay, P. Prevalence, Antimicrobial Resistance, and Genetic Relationship of Methicillin-Resistant Staphylococcus aureus from Meats, Hat-Yai, Thailand. ASEAN J. Sci. Technol. Rep. 2025, 28(3), 1–7. https://doi.org/10.55164/ajstr.v28i3.256114
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, 2020; pp 1–294.
Tabut, P.; Yongyod, R.; Ungcharoen, R.; Kerdsin, A. The Distribution of Mobile Colistin-Resistant Genes, Carbapenemase-Encoding Genes, and Fluoroquinolone-Resistant Genes in Escherichia coli Isolated from Natural Water Sources in Upper Northeast Thailand. Antibiotics 2022, 11, 1760. https://doi.org/10.3390/antibiotics11121760
Bong, C. W.; Low, K. Y.; Chai, L. C.; Lee, C. W. Prevalence and Diversity of Antibiotic-Resistant Escherichia coli from Anthropogenic-Impacted Larut River. Front. Public Health 2022, 10, 794513. https://doi.org/10.3389/fpubh.2022.794513
Gonçalves Pessoa, R. B.; Oliveira, W. F.; Marques, D. S. C.; Correia, M. T. D. S.; de Carvalho, E. V. M. M.; Coelho, L. C. B. B. The Genus Aeromonas: A General Approach. Microb. Pathog. 2019, 130, 81–94. https://doi.org/10.1016/j.micpath.2019.02.036
Gonzalez-Ferrer, S.; Peñaloza, H. F.; Budnick, J. A.; Bain, W. G.; Nordstrom, H. R.; Lee, J. S.; Van Tyne, D. Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infect. Immun. 2021, 89 (4), e00693-20. https://doi.org/10.1128/iai.00693-20
Nopprapun, P.; Boontanon, S. K.; Piyaviriyakul, P.; Sweattatut, R.; Fujii, S.; Harada, H. Human Source Identification by Using a Human-Associated Escherichia coli Genetic Marker in the Mae Klong River, Thailand. J. Water Health 2022, 20(5), 794–802. https://doi.org/10.2166/wh.2022.296
Díaz-Gavidia, C.; Barría, C.; Weller, D. L.; Salgado-Caxito, M.; Estrada, E. M.; Araya, A.; Vera, L.; Smith, W.; Kim, M.; Moreno-Switt, A. I.; Olivares-Pacheco, J.; Adell, A. D. Humans and Hoofed Livestock Are the Main Sources of Fecal Contamination of Rivers Used for Crop Irrigation: A Microbial Source Tracking Approach. Front. Microbiol. 2022, 13, 768527. https://doi.org/10.3389/fmicb.2022.768527
Quyen, D. V.; Lanh, P. T.; Oanh, N. K. Isolation and Characterization of Escherichia coli Associated with Diarrhea in Chickens and Ducks in Hai Phong Province. Acad. J. Biol. 2024, 46(3), 17–26. https://doi.org/10.15625/2615-9023/20228
Ibrahim, I. A.; Al-Shwaikh, R. M.; Ismaeil, M. I. Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Tigris River and Children Diarrhea. Infect. Drug Resist. 2019, 7, 317–322. https://doi.org/10.2147/IDR.S70684
Wan, B.; Zhang, Q.; Ni, J.; Li, S.; Wen, D.; Li, J.; Xiao, H.; He, P.; Ou, H. Y.; Tao, J.; Teng, Q.; Lu, J.; Wu, W.; Yao, Y. F. Type VI Secretion System Contributes to Enterohemorrhagic Escherichia coli Virulence by Secreting Catalase against Host Reactive Oxygen Species (ROS). PLoS Pathog. 2017, 13(3), e1006246. https://doi.org/10.1371/journal.ppat.1006246
Fang, F. C. Antimicrobial Reactive Oxygen and Nitrogen Species: Concepts and Controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. https://doi.org/10.1038/nrmicro1004
Imlay, J. A. The Molecular Mechanisms and Physiological Consequences of Oxidative Stress: Lessons from a Model Bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. https://doi.org/10.1038/nrmicro3032
Das, D.; Bishayi, B. Staphylococcal Catalase Protects Intracellularly Survived Bacteria by Destroying H₂O₂ Produced by the Murine Peritoneal Macrophages. Microb. Pathog. 2009, 47, 57–67. https://doi.org/10.1016/j.micpath.2009.04.012
Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001
Van, T. T. H.; Chin, J.; Chapman, T.; Tran, L. T.; Coloe, P. J. Safety of Raw Meat and Shellfish in Vietnam: An Analysis of Escherichia coli Isolations for Antibiotic Resistance and Virulence Genes. Int. J. Food Microbiol. 2008, 124(3), 217–223. https://doi.org/10.1016/j.ijfoodmicro.2008.03.029
Centers for Disease Control and Prevention (CDC). Antibiotic Resistance; National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP): Atlanta, GA. https://www.cdc.gov/drugresistance/about.html (accessed August 6, 2022).