Biodiesel Production from Chlorella sp.

Main Article Content

Danang Jaya
Heni Anggorowati
Putri Restu Dewati3
Rifka Azzahra Artha Kinara
Niken Widiawati

บทคัดย่อ

This research utilizes the microalgae Chlorella sp. as a raw material for biodiesel production through the in-situ microwave-assisted transesterification method with the addition of a co-solvent. This study examines the effects of microwave power, reaction time, H₂SO₄ catalyst concentration on biodiesel yield. The study results show that using the in-situ microwave-assisted transesterification method with hexane as a co-solvent can increase the efficiency of biodiesel production from the microalgae Chlorella sp. The optimal conditions were a transesterification time of 7 minutes and a catalyst concentration of 0.3 M, which produced the highest biodiesel yield of 77.32%.

Article Details

ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Edeh, I. Biodiesel Production as a Renewable Resource for the Potential Displacement of the Petroleum Diesel. In Biorefinery Concepts, Energy and Products; Beschkov, V., Ed.; IntechOpen: London, 2020. https://doi.org/10.5772/intechopen.93013

Rezania, S.; Taib, S. M.; Din, M. F. M.; Dahalan, F. A.; Kamyab, H.; Ariffin, H.; Montoya, L. H.; Mohammadi, A. A. Review on Transesterification of Non-Edible Sources for Biodiesel Production with a Focus on Economic Aspects, Fuel Properties and By-Product Applications. Energy Convers. Manag. 2019, 201, 112155. https://doi.org/10.1016/j.enconman.2019.112155.

Hassan, M. H.; Kalam, M. A. An Overview of Biofuel as a Renewable Energy Source: Development and Challenges. Procedia Eng. 2013, 56, 39-53. https://doi.org/10.1016/j.proeng.2013.03.087.

Zhang, S.; Zhang, L.; Xu, G.; Li, F.; Li, X. A Review on Biodiesel Production from Microalgae: Influencing Parameters and Recent Advanced Technologies. Front. Microbiol. 2022, 13, 970028. https://doi.org/10.3389/fmicb.2022.970028.

Pandey, S.; Narayanan, I.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. Biodiesel Production from Microalgae: A Comprehensive Review on Influential Factors, Transesterification Processes, and Challenges. Fuel 2024, 367, 131547. https://doi.org/10.1016/j.fuel.2024.131547.

Mathimani, T.; Sekar, M.; Shanmugam, S.; Sabir, J. S. M.; Chi, N. T. L.; Pugazhendhi, A. Relative Abundance of Lipid Types among Chlorella sp. and Scenedesmus sp. and Ameliorating Homogeneous Acid Catalytic Conditions Using Central Composite Design (CCD) for Maximizing Fatty Acid Methyl Ester Yield. Sci. Total Environ. 2021, 771, 144700. https://doi.org/10.1016/j.scitotenv.2020.144700.

Go, A. W.; Sutanto, S.; Ong, L. K.; Tran-Nguyen, P. L.; Ismadji, S.; Ju, Y. H. Developments in In-Situ (Trans) Esterification for Biodiesel Production: A Critical Review. Renew. Sustain. Energy Rev. 2016, 60, 284-305. https://doi.org/10.1016/j.rser.2016.01.070.

Kasim, F. H.; Harvey, A. P.; Zakaria, R. Biodiesel Production by In Situ Transesterification. Biofuels 2010, 1(2), 355-365. https://doi.org/10.4155/bfs.10.6.

Rodrigues, M. C.; Cunha, S.; Teixeira, L. S. G. In Situ Transesterification from Soybean Seed Using Mechanochemical Methods Toward Producing Biodiesel. ACS Omega 2023, 8(50), 47791-47797. https://doi.org/10.1021/acsomega.3c06269.

Makareviciene, V.; Sendzikiene, E.; Gumbyte, M. Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review. Energies 2020, 13(9), 2204. https://doi.org/10.3390/en13092204.

Tuntiwiwattanapun, N.; Monono, E.; Wiesenborn, D.; Tongcumpou, C. In-Situ Transesterification Process for Biodiesel Production Using Spent Coffee Grounds from the Instant Coffee Industry. Ind. Crops Prod. 2017, 102, 23–31. https://doi.org/10.1016/j.indcrop.2017.03.019.

Amarulloh, A.; Haikal, H.; Atmoko, N. T.; Utomo, B. R.; Setiadhi, D.; Marchant, D.; Zhu, X.; Riyadi, T. W. B. Effect of Power and Diameter on Temperature and Frequency in Induction Heating Process of AISI 4140 Steel. Mech. Eng. Soc. Ind. 2022, 2(1), 26-34. https://doi.org/10.31603/mesi.6782.

Ali, M.; Watson, I. A. Microwave Thermolysis and Lipid Recovery from Dried Microalgae Powder for Biodiesel Production. Energy Technol. 2016, 4(2), 319-330. https://doi.org/10.1002/ente.201500242.

Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918.

Chaves, J. O.; de Souza, M. C.; da Silva, L. C.; Lachos-Perez, D.; Torres-Mayanga, P. C.; da Fonseca Machado, A. P.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A. V.; Barbero, G. F.; Rostagno, M. A. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. https://doi.org/10.3389/fchem.2020.507887.

Bintari, Y. R.; Haryadi, W.; Rahardjo, T. J. Ekstraksi Lipida dengan Metode Microwave Assisted Extraction dari Mikroalga yang Potensial sebagai Biodiesel. JU-ke 2018, 2(2), 180-189.

Qadariyah, L.; Mujaddid, F.; Bhuana, D. S.; Mahfud, M. Biodiesel Production from Microalgae with Trans-Esterification Method Using Microwave. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543(1), 012073. https://doi.org/10.1088/1757-899X/543/1/012073.

Mohadesi, M.; Moradi, G.; Ghanbari, M.; Moradi, M. J. Investigating the Effect of n-Hexane as Solvent on Waste Cooking Oil Conversion to Biodiesel Using CaO on a New Support as Catalyst. Meas. J. Int. Meas. Confed. 2019, 135, 606-612. https://doi.org/10.1016/j.measurement.2018.12.022.

Ramadhas, A. S.; Jayaraj, S.; Muraleedharan, C. Biodiesel Production from High FFA Rubber Seed Oil. Fuel 2005, 84(4), 335-340. https://doi.org/10.1016/j.fuel.2004.09.016.