การทำนายปริมาณการใช้ไฟฟ้าเฉลี่ยต่อคนโดยใช้การเรียนรู้ของเครื่องแบบแปลผลได้ ข้อมูลจากประเทศไทยในช่วงปี 1973 จนถึง 2021

Main Article Content

Theera Thongsanitkarn
Prompong Sugunnasil

บทคัดย่อ

ความต้องการใช้ไฟฟ้าที่เพิ่มขึ้นอย่างต่อเนื่องก่อให้เกิดปัญหาสำคัญต่อผู้กำหนดนโยบายและบริษัทสาธารณูปโภค การพยากรณ์การใช้ไฟฟ้าที่แม่นยำมีความสำคัญอย่างยิ่งต่อการจัดการพลังงานอย่างมีประสิทธิภาพ วิทยานิพนธ์ฉบับนี้นำเสนอแนวทางการเรียนรู้ของเครื่องที่สามารถอธิบายได้ (Interpretable Machine Learning) สำหรับการพยากรณ์ความต้องการพลังงาน โดยผสานปัจจัยเศรษฐกิจมหภาค เช่น ผลิตภัณฑ์มวลรวมภายในประเทศ (GDP) อัตราเงินเฟ้อ และการเติบโตของภาคอุตสาหกรรม การศึกษานี้ใช้ข้อมูลจากฐานข้อมูล World Development Indicators ในช่วงปี พ.ศ. 2516 ถึง พ.ศ. 2564 และใช้แบบจำลอง Multilayer Perceptron ผลการวิจัยเน้นย้ำถึงความสำคัญของการพิจารณาปัจจัยทางเศรษฐกิจต่อความต้องการใช้ไฟฟ้า ซึ่งนำไปสู่แนวทางที่เชื่อถือได้สำหรับการพยากรณ์การใช้พลังงานไฟฟ้า การศึกษานี้ช่วยเพิ่มพูนองค์ความรู้โดยการนำเสนอแบบจำลองที่ชัดเจนซึ่งสนับสนุนกระบวนการตัดสินใจที่เกี่ยวข้องกับการจัดการพลังงานและการกำหนดนโยบาย

Article Details

ประเภทบทความ
บทความวิชาการ

เอกสารอ้างอิง

Qureshi, M.; Arbab, M. A.; Rehman, S. ur. Deep Learning-Based Forecasting of Electricity Consumption. Sci Rep. 2024, 14(1). https://doi.org/10.1038/s41598-024-56602-4.

Chung, J.; Jang, B. Accurate Prediction of Electricity Consumption Using a Hybrid CNN-LSTM Model Based on Multivariable Data. PLoS ONE 2022, 17(11), e0278071. https://doi.org/10.1371/journal.pone.0278071.

Wang, T.; Zhao, Q.; Gao, W.; He, X. Research on Energy Consumption in Household Sector: A Comprehensive Review Based on Bibliometric Analysis. Front. Energy Res. 2024, 11. https://doi.org/10.3389/fenrg.2023.1209290.

Altın, H. The Impact of Energy Efficiency and Renewable Energy Consumption on Carbon Emissions in G7 Countries. International Journal of Sustainable Engineering 2024, 17(1), 134-142. https://doi.org/10.1080/19397038.2024.2319648.

Ferrer, A. L. C.; Thomé, A. M. T.; Scavarda, A. J. Sustainable Urban Infrastructure: A Review. Resources, Conservation and Recycling 2018, 128, 360–372. https://doi.org/10.1016/j.resconrec.2016.07.017.

Angel, S. Urban Expansion: Theory, Evidence and Practice. Buildings and Cities 2023, 4(1), 124-138. https://doi.org/10.5334/bc.348.

Tang, X.; Dai, Y.; Wang, T.; Chen, Y. Short‐term Power Load Forecasting Based on Multi‐layer Bidirectional Recurrent Neural Network. IET Generation Trans & Dist 2019, 13(17), 3847-3854. https://doi.org/10.1049/iet-gtd.2018.6687.

Axay J Mehta; Mehta, H. A.; T.C.Manjunath; Ardil, C. A Multi-Layer Artificial Neural Network Architecture Design For Load Forecasting In Power Systems. Zenodo 2008. https://doi.org/10.5281/ZENODO.1059528.

Jiang, P.; Li, R.; Liu, N.; Gao, Y. A Novel Composite Electricity Demand Forecasting Framework by Data Processing and Optimized Support Vector Machine. Applied Energy 2020, 260, 114243. https://doi.org/10.1016/j.apenergy.2019.114243.

Goswami, K.; Kandali, A. B. Electricity Demand Prediction Using Data Driven Forecasting Scheme: Performance ARIMA and SARIMA for Real-Time Load Data of Assam. 2020 International Conference on Computational Evaluation (ComPE), 2020, 570-574. https://doi.org/10.1109/compe49325.2020.9200031.

Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short Term Load Forecasting Based on ARIMA and ANN Approaches. Energy Reports 2023, 9, 550–557. https://doi.org/10.1016/j.egyr.2023.01.060.

Nie, P.; Roccotelli, M.; Fanti, M. P.; Ming, Z.; Li, Z. Prediction of Home Energy Consumption Based on Gradient Boosting Regression Tree. Energy Reports 2021, 7, 1246-1255. https://doi.org/10.1016/j.egyr.2021.02.006.

Abbasimehr, H.; Shabani, M.; Yousefi, M. An Optimized Model Using LSTM Network for Demand Forecasting. Computers & Industrial Engineering 2020, 143, 106435. https://doi.org/10.1016/j.cie.2020.106435.

Islam, B. ul; Ahmed, S. F. Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks. Mathematical Problems in Engineering, 2022, 1-10. https://doi.org/10.1155/2022/2316474.

Fan, G.-F.; Wei, X.; Li, Y.-T.; Hong, W.-C. Forecasting Electricity Consumption Using a Novel Hybrid Model. Sustainable Cities and Society 2020, 61, 102320. https://doi.org/10.1016/j.scs.2020.102320.

Bessec, M.; Fouquau, J. The Non-Linear Link between Electricity Consumption and Temperature in Europe: A Threshold Panel Approach. Energy Economics 2008, 30(5), 2705-2721. https://doi.org/10.1016/j.eneco.2008.02.003.

Ma, S.; Li, S.; Luo, Q.; Yu, Z.; Wang, Y. Revisiting the Relationships between Energy Consumption, Economic Development and Urban Size: A Global Perspective Using Remote Sensing Data. Heliyon 2024, 10(5), e27318. https://doi.org/10.1016/j.heliyon.2024.e27318.

Ahmed, M.; Huan, W.; Ali, N.; Shafi, A.; Ehsan, M.; Abdelrahman, K.; Khan, A. A.; Abbasi, S. S.; Fnais, M. S. The Effect of Energy Consumption, Income, and Population Growth on CO2 Emissions: Evidence from NARDL and Machine Learning Models. Sustainability 2023, 15(15), 11956. https://doi.org/10.3390/su151511956.

Narayan, P. K.; Smyth, R. Electricity Consumption, Employment and Real Income in Australia Evidence from Multivariate Granger Causality Tests. Energy Policy 2005, 33 (9), 1109–1116. https://doi.org/10.1016/j.enpol.2003.11.010.

Lu, F.; Ma, F.; Hu, S. Does Energy Consumption Play a Key Role? Re-Evaluating the Energy Consumption-Economic Growth Nexus from GDP Growth Rates Forecasting. Energy Economics 2024, 129, 107268. https://doi.org/10.1016/j.eneco.2023.107268.

Dokas, I.; Oikonomou, G.; Panagiotidis, M.; Spyromitros, E. Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review. Energies 2023, 16(3), 1491. https://doi.org/10.3390/en16031491.

Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 2018, 80-89. https://doi.org/10.1109/dsaa.2018.00018.

Brusa, E.; Cibrario, L.; Delprete, C.; Di Maggio, L. G. Explainable AI for Machine Fault Diagnosis: Understanding Features’ Contribution in Machine Learning Models for Industrial Condition Monitoring. Applied Sciences 2023, 13(4), 2038. https://doi.org/10.3390/app13042038.

Bozorgpanah, A.; Torra, V. Explainable Machine Learning Models with Privacy. Prog Artif Intell 2024, 13(1), 31–50. https://doi.org/10.1007/s13748-024-00315-2.

Vishwarupe, V.; Joshi, P. M.; Mathias, N.; Maheshwari, S.; Mhaisalkar, S.; Pawar, V. Explainable AI and Interpretable Machine Learning: A Case Study in Perspective. Procedia Computer Science 2022, 204, 869-876. https://doi.org/10.1016/j.procs.2022.08.105.

Gramegna, A.; Giudici, P. SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk. Front. Artif. Intell. 2021, 4. https://doi.org/10.3389/frai.2021.752558.

Ahmed, S.; Kaiser, M. S.; Shahadat Hossain, M.; Andersson, K. A Comparative Analysis of LIME and SHAP Interpreters With Explainable ML-Based Diabetes Predictions. IEEE Access 2025, 13, 37370-37388. https://doi.org/10.1109/access.2024.3422319.

Huang, A. A.; Huang, S. Y. Increasing Transparency in Machine Learning through Bootstrap Simulation and Shapely Additive Explanations. PLoS ONE 2023, 18(2), e0281922. https://doi.org/10.1371/journal.pone.0281922.

Zhang, H.; Chen, B.; Li, Y.; Geng, J.; Li, C.; Zhao, W.; Yan, H. Research on Medium- and Long-Term Electricity Demand Forecasting under Climate Change. Energy Reports 2022, 8, 1585-1600. https://doi.org/10.1016/j.egyr.2022.02.210.

Mir, A. A.; Alghassab, M.; Ullah, K.; Khan, Z. A.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12(15), 5931. https://doi.org/10.3390/su12155931.

Gonçalves, A. C. R.; Costoya, X.; Nieto, R.; Liberato, M. L. R. Extreme Weather Events on Energy Systems: A Comprehensive Review on Impacts, Mitigation, and Adaptation Measures. Sustainable Energy res. 2024, 11(1). https://doi.org/10.1186/s40807-023-00097-6.

Russo, M. A.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the Inevitable: A Review on the Impacts of Climate Change on Renewable Energy Resources. Sustainable Energy Technologies and Assessments 2022, 52, 102283.

https://doi.org/10.1016/j.seta.2022.102283.

Benti, N. E.; Chaka, M. D.; Semie, A. G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15(9), 7087. https://doi.org/10.3390/su15097087.

Ahmad, T.; Zhang, H.; Yan, B. A Review on Renewable Energy and Electricity Requirement Forecasting Models for Smart Grid and Buildings. Sustainable Cities and Society 2020, 55, 102052. https://doi.org/10.1016/j.scs.2020.102052.

Phuangpornpitak, N.; Prommee, W. A study of load demand forecasting models in electric power system operation and planning. GMSARN Int. J. 2016, 10, 19-24. (In Thai)

Gebre, M. T.; Hwang, J.; Biru, G. Electricity Demand Analysis and Forecasting: The Case of GADA Special Economic Zone. Heliyon 2024, 10(3), e25364. https://doi.org/10.1016/j.heliyon.2024.e25364.

Fan, J.-L.; Hu, J.-W.; Zhang, X. Impacts of Climate Change on Electricity Demand in China: An Empirical Estimation Based on Panel Data. Energy 2019, 170, 880-888. https://doi.org/10.1016/j.energy.2018.12.044.

De Felice, M.; Alessandri, A.; Ruti, P. M. Electricity Demand Forecasting over Italy: Potential Benefits Using Numerical Weather Prediction Models. Electric Power Systems Research 2013, 104, 71-79. https://doi.org/10.1016/j.epsr.2013.06.004.

Abokyi, E.; Appiah-Konadu, P.; Sikayena, I.; Oteng-Abayie, E. F. Consumption of Electricity and Industrial Growth in the Case of Ghana. Journal of Energy 2018, 1-11. https://doi.org/10.1155/2018/8924835.

Madlener, R.; Sunak, Y. Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management?. Sustainable Cities and Society 2011, 1(1), 45-53. https://doi.org/10.1016/j.scs.2010.08.006.

Salat, H.; Smoreda, Z.; Schläpfer, M. A Method to Estimate Population Densities and Electricity Consumption from Mobile Phone Data in Developing Countries. PLoS ONE 2020, 15(6), e0235224. https://doi.org/10.1371/journal.pone.0235224.

Arens, M.; Worrell, E. Diffusion of Energy Efficient Technologies in the German Steel Industry and Their Impact on Energy Consumption. Energy 2014, 73, 968-977. https://doi.org/10.1016/j.energy.2014.06.112.

Herring, H.; Roy, R. Technological Innovation, Energy Efficient Design and the Rebound Effect. Technovation 2007, 27(4), 194-203. https://doi.org/10.1016/j.technovation.2006.11.004.

Kwon, S.; Cho, S.-H.; Roberts, R. K.; Kim, H. J.; Park, K.; Edward Yu, T. Effects of Electricity-Price Policy on Electricity Demand and Manufacturing Output. Energy 2016, 102, 324-334. https://doi.org/10.1016/j.energy.2016.02.027.

Otsuka, A. Industrial Electricity Consumption Efficiency and Energy Policy in Japan. Utilities Policy 2023, 81, 101519. https://doi.org/10.1016/j.jup.2023.101519.

Zhou, K.; Yang, S. Understanding Household Energy Consumption Behavior: The Contribution of Energy Big Data Analytics. Renewable and Sustainable Energy Reviews 2016, 56, 810-819. https://doi.org/10.1016/j.rser.2015.12.001.

Dong, X.-Y.; Hao, Y. Would Income Inequality Affect Electricity Consumption? Evidence from China. Energy 2018, 142, 215-227. https://doi.org/10.1016/j.energy.2017.10.027.

Kapustin, N. O.; Grushevenko, D. A. Long-Term Electric Vehicles Outlook and Their Potential Impact on Electric Grid. Energy Policy 2020, 137, 111103. https://doi.org/10.1016/j.enpol.2019.111103.

Meliani, M.; Barkany, A. E.; Abbassi, I. E.; Darcherif, A. M.; Mahmoudi, M. Energy Management in the Smart Grid: State-of-the-Art and Future Trends. International Journal of Engineering Business Management 2021, 13. https://doi.org/10.1177/18479790211032920.

Wang, J. Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197. https://doi.org/10.1016/j.energy.2020.117197.

Shaikh, A. K.; Nazir, A.; Khan, I.; Shah, A. S. Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis for Interpretable Time Series. Sci Rep. 2022, 12(1). https://doi.org/10.1038/s41598-022-26499-y.

Aisyah, S.; Simaremare, A. A.; Adytia, D.; Aditya, I. A.; Alamsyah, A. Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia. Energies 2022, 15(10), 3566. https://doi.org/10.3390/en15103566.

Pelka, P. Pattern-Based Forecasting of Monthly Electricity Demand Using Support Vector Machine. 2021 International Joint Conference on Neural Networks (IJCNN), 2021, 1-8. https://doi.org/10.1109/ijcnn52387.2021.9534134.

Zhang, G.; Guo, J. A Novel Ensemble Method for Residential Electricity Demand Forecasting Based on a Novel Sample Simulation Strategy. Energy 2020, 207, 118265. https://doi.org/10.1016/j.energy.2020.118265.

Iftikhar, H.; Zywiołek, J.; López-Gonzales, J. L.; Albalawi, O. Electricity Consumption Forecasting Using a Novel Homogeneous and Heterogeneous Ensemble Learning. Front. Energy Res. 2024, 12. https://doi.org/10.3389/fenrg.2024.1442502.

Ghareeb, A.; Al-bayaty, H.; Haseeb, Q.; Zeinalabideen, M. Ensemble Learning Models for Short-Term Electricity Demand Forecasting. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 2020, 1–5. https://doi.org/10.1109/icdabi51230.2020.9325623.

Cawthorne, D.; de Queiroz, A. R.; Eshraghi, H.; Sankarasubramanian, A.; DeCarolis, J. F. The Role of Temperature Variability on Seasonal Electricity Demand in the Southern US. Front. Sustain. Cities 2021, 3. https://doi.org/10.3389/frsc.2021.644789.

Ha, J.; Tan, P.-P.; Goh, K.-L. Linear and Nonlinear Causal Relationship between Energy Consumption and Economic Growth in China: New Evidence Based on Wavelet Analysis. PLoS ONE 2018, 13(5), e0197785. https://doi.org/10.1371/journal.pone.0197785.

Kim, Y.-J.; Lee, S.-J.; Jin, H.-S.; Suh, I.-A.; Song, S.-Y. Comparison of Linear and Nonlinear Statistical Models for Analyzing Determinants of Residential Energy Consumption. Energy and Buildings 2020, 223, 110226. https://doi.org/10.1016/j.enbuild.2020.110226.

Chen, G.; Hu, Q.; Wang, J.; Wang, X.; Zhu, Y. Machine-Learning-Based Electric Power Forecasting. Sustainability 2023, 15(14), 11299. https://doi.org/10.3390/su151411299.

Surya, B.; Menne, F.; Sabhan, H.; Suriani, S.; Abubakar, H.; Idris, M. Economic Growth, Increasing Productivity of SMEs, and Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity 2021, 7(1), 20. https://doi.org/10.3390/joitmc7010020.

Bettarelli, L.; Estefania-Flores, J.; Furceri, D.; Loungani, P.; Pizzuto, P. Energy Inflation and Consumption Inequality. Energy Economics 2023, 124, 106823. https://doi.org/10.1016/j.eneco.2023.106823.

Barbierato, E.; Gatti, A. The Challenges of Machine Learning: A Critical Review. Electronics 2024, 13(2), 416. https://doi.org/10.3390/electronics13020416.

Freiesleben, T.; König, G.; Molnar, C.; Tejero-Cantero, A. Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena. arXiv 2022. https://doi.org/10.48550/ARXIV.2206.05487.

Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23(1), 18. https://doi.org/10.3390/e23010018.