The Procedure for Generating Random Numbers with Crack Distribution

Main Article Content

Chom Panta

Abstract

The paper investigates an algorithm that can generate random numbers that follow the three-parameter of the Crack lifetime distribution. The process combines analytical and composite methods.

Article Details

Section
บทความวิจัย

References

Abraham Wald. Sequential Analysis. 1947.

A.F. Desmond. On the relationship between two fatigue-life models. Reliability, IEEE Transactions on, 35(2):167–169, 1986.

A. N. Ahmed and A. M. Abouammoh. Characterizations of gamma, inverse Gaussian, and negative binomial distributions via their length-biased distributions. Statist. Papers, 34(2):167–173, 1993.

Anthony Desmond. Stochastic models of failure in random environments. Canad. J. Statist., 13(3):171–183, 1985.

Avital Cnaan. Survival models with two phases and length biased sampling. Comm. Statist. A—Theory Methods, 14(4):861–886, 1985.

B. Jørgensen, V. Seshadri, and G. A. Whitmore. On the mixture of the inverse Gaussian distribution with its complementary reciprocal. Scand. J. Statist., 18(1):77–89, 1991.

Budsaba Kamon, Lisawadi Supranee, Ahmed Syed Ejaz and Andrei Volodin. Parametric estimation for the birnbaum-saunders lifetime distribution based on a new parameterization. Thailand Statistician, 6(2):213–240, 2008.

Cribari-Neto Francisco Lemonte, Artur J. and Klaus L.P. Vasconcellos. Improved statistical inference for the two-parameter birnbaum–saunders distribution. Computational Statistics & Data Analysis, 51(9):4656–4681, 2007.

Debasis Kundu, N. Balakrishnan, and A. Jamalizadeh. Bivariate Birnbaum-Saunders distribution and associated inference. J. Multivariate Anal., 101(1):113–125, 2010.

Dong Shang Chang and Loon Ching Tang. Reliability bounds and critical time for the birnbaum-saunders distribution. Reliability, IEEE Transactions on, 42(3):464–469, 1993.

Dong Shang Chang and Loon Ching Tang. Percentile bounds and tolerance limits for the Birnbaum-Saunders distribution. Comm. Statist. Theory Methods, 23(10):2853–2863, 1994.

D.R. Cox. Some sampling problems in technology. In New Developments in Survey Sampling, U. L. Johnson and H. Smith, eds, pages 506––527. New York: Wiley Interscience., 1969.

E Schrodinger. Zur theorie der fallâ und steigversuche an teilchenn mit brownscher bewegung. Physikalische Zeitschrift.

Feng-Chang Xie and Bo-Cheng Wei. Diagnostics analysis for log-Birnbaum-Saunders regression models. Comput. Statist. Data Anal., 51(9):4692–4706, 2007.

Gauss M. Cordeiro and Artur J. Lemonte. The -Birnbaum-Saunders distribution: an improved distribution for fatigue life modeling. Comput. Statist. Data Anal., 55(3):1445–1461, 2011.

G. P. Patil and C. R. Rao. Weighted distributions and a survey of their applications. In Applications of Statistics, P. R. Krishnaiah, ed., pages 383–405. North-Holland Publishing Co., 1977.

G. P. Patil and C. R. Rao. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34(2):179–189, 1978.

H.K.T. Ng, Debasis Kundu, and N. Balakrishnan. Modified moment estimation for the two-parameter birnbaum–saunders distribution. Computational Statistics & Data Analysis, 43(3):283–298, 2003.

H. K. T. Ng, D. Kundu, and N. Balakrishnan. Erratum to: “Point and interval estimation for the two-parameter Birnbaum-Saunders distribution based on Type-II censored samples” [Computational Statistics & Data Analysis 50 (2006), 3222–3242]. Comput. Statist. Data Anal., 51(8):4001, 2007.

Ibrahim A. Ahmad. Jackknife estimation for a family of life distributions. J. Statist. Comput. Simulation, 29(3):211–223, 1988.

I. N. Volodin and O. A. Dzhungurova. On limit distributions emerging in the generalized Birnbaum-Saunders model. In Proceedings of the 19th Seminar on Stability Problems for Stochastic Models, Part I (Vologda, 1998), volume 99, pages 1348–1366, 2000.

Jonathan Shuster. On the inverse Gaussian distribution function. J. Amer. Statist. Assoc., 63:1514–1516, 1968.

Jagdish K Patel and Campbell B Read. Handbook of the normal distribution, volume 150. CRC Press, 1996.

James Russell Rieck. Statistical analysis for the Birnbaum-Saunders fatigue life distribution. ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–Clemson University.

Kundu Debasis Ng, H.K.T. and N Balakrishnan. Point and interval estimation for the two-parameter birnbaum–saunders distribution based on type-ii censored samples.

Leiva Vctor Sanhueza Antonio Balakrishnan, N. and Enrique Cabrera. Mixture inverse gaussian distributions and its transformations, moments and applications. Statistics, 43(1):91–104, 2009.

Marvin Rausand and Arnljot Høyland. System reliability theory. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2004.

M. C. K. Tweedie. Statistical properties of inverse Gaussian distributions. I, II. Ann. Math. Statist., 28:362–377, 696–705, 1957.

M. Ahsanullah and S. N. U. A. Kirmani. A characterization of the Wald distribution. Naval Res. Logist. Quart., 31(1):155–158, 1984.

Monthira Duangsaphon. Improved statistical inference for three-parameter Crack lifetime distribution. Ph.D. Thesis, Thammasat University, 2014.

M. Zelen and M. Feinleib. On the theory of screening for chronic diseases. Biometrika, 56:601–614, 1969.

Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous univariate distributions. Vol. 2. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1995. A Wiley-Interscience Publication.

Phitchaphat Bowonrattanaset and Kamon Budsaba. Some properties of the three-parameter Crack distribution. Thailand Statistician, 9(2):195–203, 2011.

Phitchaphat Bowonrattanaset. Point Estimation for Crack Lifetime Distribution. Ph.D. Thesis, Thammasat University, 2011.

Pornpop Saengthong and Winai Bodhisuwan. A new two-parameter Crack distribution. Applied Sciences, 14(8):758–766, 2014.

Pranab Kumar Sen. What do the arithmetic, geometric and harmonic means tell us in length-biased sampling? Statist. Probab. Lett., 5(2):95–98, 1987.

Raj S. Chhikara and J. Leroy Folks. The Inverse Gaussian Distribution: Theory, Methodology, and Applications. Marcel Dekker, Inc., New York, NY, USA, 1989.

Ram C. Tripathi and Ramesh C. Gupta. A comparison between the ordinary and the length-biased modified power series distributions with applications. Comm. Statist. Theory Methods, 16(4):1195–1206, 1987.

Ramesh C. Gupta and S. N. U. A. Kirmani. On order relations between reliability measures. Comm. Statist. Stochastic Models, 3(1):149–156, 1987.

Ramesh C. Gupta and H. Olcay Akman. Bayes estimation in a mixture inverse Gaussian model. Ann. Inst. Statist. Math., 47(3):493–503, 1995.

Ramesh C. Gupta and H. Olcay Akman. On the reliability studies of a weighted inverse Gaussian model. J. Statist. Plann. Inference, 48(1):69–83, 1995.

Ramesh C. Gupta and Olcay Akman. Statistical inference based on the length-biased data for the inverse Gaussian distribution. Statistics, 31(4):325–337, 1998.

Richard Simon. Length biased sampling in etiologic studies. American Journal of Epidemiology, 111(4):444–452, 1980.

R. Khattree. Characterization of inverse-gaussian and gamma distributions through their length-biased distribution. IEEE Reliabilitty, 38:610–611, 1989.

RL Scheaffer. Size-biased sampling. Technometrics, 14(3):635–644, 1972.

Saul Blumenthal. Proportional sampling in life length studies. Technometrics, 9:205–218, 1967.

Schucany-William R. Michael, John R. and Roy W. Haas. Generating random variates using transformations with multiple roots. The American Statistician, 30(2):88–90, 1976.

Sheldon M. Ross. Simulation. Elsevier/Academic Press, Amsterdam, 2013. Fifth edition [of 1433593].

Steven G. From and Linxiong Li. Estimation of the parameters of the Birnbaum-Saunders distribution. Comm. Statist. Theory Methods, 35(10-12):2157–2169, 2006.

V. Seshadri. The inverse Gaussian distribution. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. A case study in exponential families.

V. Seshadri. The inverse Gaussian distribution, volume 137 of Lecture Notes in Statistics. Springer-Verlag, New York, 1999. Statistical theory and applications.

Yogendra P. Chaubey, Debaraj Sen, and Krishna K. Saha. On testing the coefficient of variation in an inverse Gaussian population. Statist. Probab. Lett., 90:121–128, 2014.

Y. Vardi. Nonparametric estimation in the presence of length bias. Ann. Statist., 10(2):616–620, 1982.

Z.W. Birnbaum and Sam C. Saunders. Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability, pages 328–347, 1969.

Z.W. Birnbaum and Sam C. Saunders. A new family of life distributions. Journal of Applied Probability, pages 319–327, 1969.