การคัดกรองฤทธิ์ทางชีวภาพจากแบคทีเรียที่แยกได้จากดินบริเวณที่ทำการเกษตรกรรมในเขตภาคกลาง

Main Article Content

่Juangjun Jumpathong

Abstract

The purpose of this study was to screen for the biological activities and potential phosphate solubilizing activity of 115 bacteria isolates from soil in a field that had recently been sprayed with pesticides in parts of KamphaengPhet, Chainat, Phitsanulok and Phichit. A modified drop collapse method was employed to screen for surfactant producing bacteria. Our results showed bacterial isolates M57 and M59 produced biosurfactants, and the biosurfactant producing supernatant of M57 was able to inhibit the growth of Sclerotium rolfsii when tested by the Agar well diffusion method. Pikovskaya's liquid medium was used to cultivate phosphate solubilizing bacteria, and the phosphate solubilizing activity was examined by the molybdenum blue method. Bacterial isolates M14, M39, M43 and M59 all exhibited phosphate solubilizing activity between 205.58±1.50 - 288.48±6.80 mg/L, with the highest phosphate solubilizing ability being M43. Based on 16S rDNA sequence data, bacterial isolates M14, M39, M43, M57 and M59 were correlated to Pseudomonas aeruginosa SP16, Bacillus megaterium WR19A, Bacillus sp. 7B-635, P. aeruginosa strain EH8 and P. aeruginosa strain G1, respectively. Bacteria in the genus Bacillus and Pseudomonas derived from this research will be further studied to develop bio-products and bio-pesticides for greenhouse applications.

Article Details

Section
บทความวิจัย

References

เอกสารอ้างอิง
เกตน์ณนิภา วันชัย และสมาพร เรืองสังฃ์. 2557. ผลของแบคทีเรียละลายฟอสเฟตที่ตรึงอยู่บนขี้เถ้าแกลบต่อการเจริญเติบโตของข้าวพันธุ์ กข47. ว. วิทย์. กษ. 45(2) ฉบับพิเศษ : 513-516.
กุศล ถมมาและ พิศาล ศิริธร. 2556. ชีวภัณฑ์เชื้อแบคทีเรียปฏิปักษ์ Bacillus subtilis B076 เพื่อการเคลือบเมล็ดและพ่นทางใบเพื่อควบคุมเชื้อแบคทีเรีย Acidovorax avenae subsp. citrulli . แก่นเกษตร 41: 339-345.
ไตรธานี เยี่ยมอ่อน , นันทวัน ฤทธิ์เดช , ประสิทธิ์ ใจศิล และ โสภณ บุญลือ. 2555. การส่งเสริมการเจริญเติบโตของอ้อยด้วยแบคทีเรียละลายฟอสเฟต ในสภาพเรือนทดลอง: แก่นเกษตร 40 ฉบับพิเศษ 3 : 185-193.
นิจกาล การอำนวย. (2550). การศึกษาความหลากหลายและประสิทธิภาพของเชื้อ Bacillus sp. ในการละลายฟอสเฟตอนินทรีย์. กรุงเทพฯ :: มหาวิทยาลัยเกษตรศาสตร์
Arutchelvi, J., & Doble, M. (2010). Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum contaminated soil. Letters in applied microbiology, 51(1), 75-82.
Afzal, I., Iqrar, I., Shinwari, Z. K., & Yasmin, A. (2017). Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regulation, 81(3), 399-408.
Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek, 85(1), 1-8.
Bodour, A. A., & Miller-Maier, R. M. (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32(3), 273-280.
Borah, S. N., Goswami, D., Sarma, H. K., Cameotra, S. S., & Deka, S. (2016). Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of Maize. Frontiers in microbiology, 7.
Chandel, S., Allan, E. J., & Woodward, S. (2010). Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. Journal of Phytopathology, 158(7-8), 470-478.
Cheng, T., Liang, J., He, J., Hu, X., Ge, Z., & Liu, J. (2017). A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation. AMB Express, 7(1), 120.
De Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. J., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and environmental microbiology, 70(11), 6657-6664.
Dhanarajan, G., & Sen, R. (2014). Cost analysis of biosurfactant production from a scientist’s perspective. Biosurfactants, 159, 153.
El-Sheshtawy, H. S., & Doheim, M. M. (2014). Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egyptian Journal of Petroleum, 23(1), 1-6.
Khan, M. S., & Rahman, M. S. (Eds.). (2017). Pesticide Residue in Foods: Sources, Management, and Control. Springer.
Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource technology, 101(7), 2389-2396.
Kruijt, M., Tran, H., & Raaijmakers, J. M. (2009). Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Journal of applied microbiology, 107(2), 546-556.
Lahkar, J., Borah, S. N., Deka, S., & Ahmed, G. (2015). Biosurfactant of Pseudomonas aeruginosa JS29 against Alternaria solani: the causal organism of early blight of tomato. BioControl, 60(3), 401-411.
Maier, R. M., & Soberon-Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54(5), 625-633.
Mulligan, C. N., Sharma, S. K., & Mudhoo, A. (Eds.). (2014). Biosurfactants: research trends and applications. CRC press.
Napompeth, B. (1990). Use of natural enemies to control agricultural pests in Thailand. Extension Bulletin-ASPAC, Food & Fertilizer Technology Center, (303).
Natedara sotsa, Nutchanat Phonkerd, and Wandee Bunyatratchata., 2014. Potential of Pseudomonas aeruginosa to Control Sclerotium rolfsii Causing Stem Rot and Collar Rot Disease of Tomato. Thailand. Journal of Advanced Agricultural Technologies Vol. 1, No. 2, December 2014
Nollet, L. M., & Rathore, H. S. (Eds.). (2015). Biopesticides handbook. CRC Press.
Prasanna, L., Eijsink, V. G., Meadow, R., & Gåseidnes, S. (2013). A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Applied microbiology and biotechnology, 97(4), 1601-1611.
Panda, A. K., Bisht, S. S., DeMondal, S., Kumar, N. S., Gurusubramanian, G., & Panigrahi, A. K. (2014). Brevibacillus as a biological tool: a short review. Antonie van Leeuwenhoek, 105(4), 623-639.
Paul, D., & Sinha, S. N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130-136.
Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P., & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of applied microbiology, 103(4), 1007-1020.
Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS microbiology reviews, 34(6), 1037-1062.
Ruangsanka, S. (2014). Identification of phosphate-solubilizing bacteria from the bamboo rhizosphere. Science Asia, 40, 204-211.
Raper, K. B., & Thom, C. (1949). A manual of the Penicillia. A manual of the Penicillia.
Sekhon, K. K., Khanna, S., & Cameotra, S. S. (2011). Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release. Microbial cell factories, 10(1), 49.
Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459.
Singh, P. B., Sharma, S., Saini, H. S., & Chadha, B. S. (2009). Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Letters in applied microbiology, 49(3), 378-383.
Song, Z., Liu, Q., Guo, H., Ju, R., Zhao, Y., Li, J. and Liu, X., 2012. Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresource technology, 111, pp.504-506.
Swain, M. R., & Ray, R. C. (2009). Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiological research, 164(2), 121-130.
Tian, B., Li, N., Lian, L., Liu, J., Yang, J., & Zhang, K. Q. (2006). Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Archives of microbiology, 186(4), 297-305.
Van Driesche, R. G., & Bellows, T. S. (1996). Biology of arthropod parasitoids and predators. In Biological control (pp. 309-336). Springer, Boston, MA.
Wattanaphon, H. T., Kerdsin, A., Thammacharoen, C., Sangvanich, P., & Vangnai, A. S. (2008). A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. Journal of applied microbiology, 105(2), 416-423.
Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., ... & He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44(3), 302-308.
Zhen Song, Kaiqi Liu, Changxu Lu, Jian Yu, Ruicheng Ju and Xunli Liu., 2011. Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. China. African Journal of Microbiology Research Vol. 5(18), pp. 2675-2681