Regularity of Variants of Semigroups of Full Transformations with Restriction on Fixed set is Bijective

Main Article Content

ดร.นเรศ สวัสดิ์รักษา

Abstract

The variant of a semigroup gif.latex?S with respect to an element a gif.latex?a&space;\in&space;S, is the semigroup with underlying set gif.latex?S and a new operation gif.latex?* defined by gif.latex?x*y=xay for gif.latex?x.y&space;\in&space;S. Let gif.latex?T(X) be the full transformation semigroup of the nonempty set  and let 


gif.latex?PG_Y&space;(X)&space;=&space;\{&space;\alpha&space;\in&space;T(X)&space;:&space;\alpha|_Y&space;\in&space;G(Y)\}


where gif.latex?Y&space;\subseteq&space;X and gif.latex?G(Y) is the permutation group on gif.latex?Y. In this paper, we investigate regular, left regular and right regular elements for the variant of the semigroup gif.latex?PG_Y&space;(X).

Article Details

Section
บทความวิจัย

References

Clifford, A.H. (1941). Semigroups admitting relative inverses. Annals of Mathematics, 42, 1037-1049. https://doi.org/10.2307/1968781

Croisot, R. (1953). Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples.Annales scientifiques de l'École Normale Supérieure, 70, 361-379. https://doi.org/10.24033/sens.1015

Green, J.A. (1951). On the structure of semigroups. Annals of Mathematics, 54, 163-172. https://doi.org/10.2307/1969317

Hickey, J.B. (1983). Semigroups under a sandwich operation. Proceedings of the Edinburgh Mathematical Society, 26, 371-382. https://doi.org/10.1017/S0013091500004442

Laysirikul, E. (2016). Semigroups of full transformations with restriction on the fixed set is bijective. Thai Journal of Mathematics, 14(2), 497-503. http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/1681

Lyapin, E.S. (1960). Semigroups (in Russian). Gosudarstv. Izdat. Fiz. Mat. Lit. Moscow.

Magill, K.D. & Jr. (1967). Semigroup structures for families of functions I. Some homomorphism theorems. Journal of the Australian Mathematical Society, 7, 81-94. https://doi.org/10.1017/S1446788700005115

Magill, K.D., Jr. & Subbiah, S. (1978). Green's relations for regular elements of sandwich semigroups. II. Semigroups of continuous functions. Journal of the Australian Mathematical Society, 25(1), 45-65. https://doi.org/10.1017/S1446788700038933

Neumann, J. (1936). On regular rings. In: Proceedings of the National Academy of Sciences of the United States of America, 22(12), 707-713. https://doi.org/10.1142/9789814313636_0020

Petrich, M. & Reilly, N.R. (1999). Completely Regular Semigroups. Wiley, New York.

Rees, D. (1940). On semigroups. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 387-400. https://doi.org/10.1017/S0305004100017436

Rees, D. (1941). Note on semigroups. Mathematical Proceedings of the Cambridge Philosophical Society, 37, 434-435. https://doi.org/10.1017/S0305004100018065

Thierrin, G. (1952). Sur les éléments inversifs et les éléments unitaires d'un demi-groupe inversif, Comptes Rendus de l'Académie des Sciences, 234, 33-34.