Enumeration of Numerical Semigroups {0}∪[a,b]∪[c,∞) with Same Embedding Dimension

Main Article Content

Chaiwat Namnak
Chonlada Phanmun
Ekkachai Laysirikul

Abstract

We consider the set gif.latex?S defined as gif.latex?\{0\}\cup[a,b]\cup[c,\infty) where gif.latex?[a,b] be the set of all integer gif.latex?x such that gif.latex?a\leq&space;x&space;\leq&space;b and gif.latex?[c,\infty) be the set integer gif.latex?y such that gif.latex?c\leq&space;y when gif.latex?a,b and gif.latex?c are positive integers satisfying gif.latex?2&space;\leq&space;a\leq&space;b&space;<&space;c-1. It is known that gif.latex?S is a numerical semigroup if and only if gif.latex?c\leq&space;2a. This research aims to characterize the minimal system of generators for numerical semigroups gif.latex?S and determine the count of numerical semigroups gif.latex?\{0\}\cup[a,b]\cup[c,\infty) that share the same embedding dimension.

Article Details

Section
บทความวิจัย

References

Chommi, N. (2020). Irreducible numerical semigroups {0}∪[a,b]∪[c,∞). (Undergraduate’s thesis). Naresuan University.

Curtis, F. (1990). On formulas for the Frobenius number of a numerical semigroup. Mathematica Scandinavica, 67, 190-193. https://www.jstor.org/stable/24492663

Davison, J.L. (1994). On the linear Diophantine problem of Frobenius. Journal of Number Theory, 48, 353–363. https://doi.org/10.1006/jnth.1994.1071

Johnson, S. M. (1960). A linear diophantine problem. Canadian Journal of Mathematics, 12, 390-398. https://doi.org/10.4153/CJM-1960-033-6

Kosasirisin, P. (2020). The number of k-symmetric numerical semigroup {0}∪[a,b]∪[c,∞). (Undergraduate’s thesis). Naresuan University.

Phosri, N. (2020). The number of k-symmetric numerical semigroup {0}∪[a,b]∪[c,∞) for k=3,4,5. (Undergraduate’s thesis). Naresuan University.

Rosales, J.C. & Garcia-Sanchez, P.A. (2009). Numerical semigroups. Springer: New York.

Sylvester, J.J. (1884). Mathematical questions with their solutions. Educational Times, 41, 171-178.

Tripathi, A. (2017). Formulae for the Frobenius number in three variables. Journal of Number Theory, 170, 368-389. https://doi.org/10.1016/j.jnt.2016.05.027