A Note on Maximal and Minimal Elements in Semigroups of Partial Transformation Preserving Order and Contraction -
Main Article Content
Abstract
For a positive integer n, let [n]={1, 2, 3, ..., n} and COPn denote the semigroup of all partial transformations that preserve order and a contraction. In this paper, we give a characterization of maximal and minimal elements of COPn with respect to its natural partial order.
For a positive integer , let , consider the semigroup consisting of all partial transformations from to such that preserves both a natural partial order ( if then ) and contraction . In this paper, we give a characterization of maximal and minimal elements of with respect to its natural partial order.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Han, X., & Sun, L. (2018). A natural partial order on certain semigroups of transformations restricted by an Equivalence. Bulletin of the Iranian Mathematical Society, 44, 1571-1579. https://doi.org/10.1007/s41980-018-0108-8
Kemprasite, Y., & Changphas, T. (2000). Regular order-preserving transformation semigroups. Bulletin of the Australian Mathematical Society, 62(3), 511-524. https://doi.org/10.1017/S000497270001902X
Kowol, G., & Mitsch, H. (1986). Naturally ordered transformation semigroups. Monatsheftl fÜr Mathematik, 102, 115-138. https://link.springer.com/article/10.1007/BF01490204
Marques-Smith, M.P., & Sullivan, R.P. (2003). Partial orders on transformation semigroups. Monatsheftl fÜr Mathematik, 140, 103-118. https://doi.org/10.1007/s00605-002-0546-4
Mitsch, H. (1986). A natural partial order for semigroups. Proceedings of the American Mathematical Society, 97(3), 384-388. https://doi.org/10.2307/2046222
Namnak, C., & Sawatraksa, N. (2015). Natural partial order for semigroups of transformations that preserve order and a contraction. Proceedings of Annual Pure and Applied Mathematics Conference 2015 (APAM 2015), 125-130.
Sangkhanan, K. (2021). A partial order on transformation semigroups with restricted range that preserve double direction equivalence. Open Mathematics, 19(1), 1366-1377. https://doi.org/10.1515/math-2021-0109
Sangkhanan, K., & Sanwong, J. (2012). Partial orders on semigroups of partial transformations with restricted range. Bulletin of the Australian Mathematical Society, 86, 100-118. https://doi.org/10.1017/S0004972712000020
Sun, L., Deng, W., & Pei, H. (2011). Naturally ordered transformation semigroups preserving an equivalence relation and a cross-section. Algebra Colloquium, 18(3), 523-532. https://doi.org/10.1142/S100538671100040X
Sun, L., Pei, H., & Cheng, Z. (2008). Naturally ordered transformation semigroups preserving an equivalence. Bulletin of the Australian Mathematical Society, 78(1), 117-128. https://doi.org/10.1017/S0004972708000543
Sun, L., & Sun, J. (2013). A partial order on transformation semigroups that preserve double direction equivalence relation. Journal of Algebra and Its Applications, 12(08), 1350041. https://doi.org/10.1142/S0219498813500412
Sun, L., & Sun, J. (2016). A natural partial order on certain semigroups of transformations with restricted range. Semigroup Forum, 92(1), 135-141. https://doi.org/10.1007/s00233-014-9686-9
Sun, L., & Wang, L. (2013). Natural partial order in semigroups of transformations with invariant set. Bullletin of the Australian Mathematical Society, 87(1), 94-107. https://doi.org/10.1017/ S0004972712000287
Zhao, P., & Yang, M. (2012). Regularity and Green's relation on semigroups of transformation preserving order and compression. Bulletin of the Korean Mathematical Society, 49(5), 1015-1025. https://doi.org/10.4134/BKMS.2012.49.5.1015