Enhancement of prebiotic properties of soybean residue using appropriate enzymes

Authors

  • Premsuda Saman Biodiversity Research Center, Thailand Institute of Scientific and Technological Research
  • Nanthida Khamkongkaew Biodiversity Research Center, Thailand Institute of Scientific and Technological Research

Abstract

This research aimed to study the prebiotic properties of dietary fiber obtained from soybean residue hydrolyzed with appropriate enzymes. Soybean meal was treated using five commercial enzymes: alpha-amylase, cellulase, hemicellulase, mannanase, and xylanase. The results showed that the digestion of soybean residue with cellulase yielded the highest amount of reducing sugar. When studying the composition of the sugars produced using the thin layer chromatography (TLC) technique, it was found that the color bands that appeared on TLC plate had a distance similar to that of glucose, fructose, arabinose and sucrose. The prebiotic activity of cellulase-treated soybean residue solutions was investigated using two probiotic strains, Bifidobacterium animalis TISTR 2194 and B. bifidum TISTR 2195 while Escherichia coli TISTR 887 was tested as a comparative inoculum. Results showed that the solution obtained from cellulase-treated soybean residue could promote the growth of B. animalis and B. bifidum. As a result, the prebiotic activity score of the cellulase-treated soybean residue solution was positive and significantly higher than those of the untreated soybean residue solution.

References

Ben, Q., Sun, Y., Chai, R., Qian, A., Xu, B., & Yuan, Y. (2014). Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology, 146(3), 689-699. https://doi.org/10.1053/j.gastro.2013.11.003

Bourassa, M.W., Alim, I., Bultman, S.J. & Ratan, R.R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neuroscience letters, 625, 56-63. https://doi:10.1016/j.neulet.2016.02.009

Fan, H., Zhang, Y., Swallah, M. S., Wang, S., Zhang, J., Fang, J., Lu, J., & Yu, H. (2022). Structural Characteristics of Insoluble Dietary Fiber from Okara with Different Particle Sizes and Their Prebiotic Effects in Rats Fed High-Fat Diet. Foods, 11(9), 1298. https://doi.org/10.3390/foods11091298

He, S., Wang, X., Zhang, Y., Wang, J., Sun, H., Wang, J., Cao, X., & Ye, Y. (2016). Isolation and prebiotic activity of water-soluble polysaccharides fractions from the bamboo shoots (Phyllostachys praecox). Carbohydrate Polymers, 151, 295-304. https://doi.org/10.1016/j.carbpol.2016.05.072

Ibrahim, S. N. M. M., Bankeeree, W., Prasongsuk, S., Punnapayak, H., & Lotrakul, P. (2022). Production and characterization of thermostable acidophilic β- mannanase from Aureobasidium pullulans NRRL 58524 and its potential in mannooligosaccharide production from spent coffee ground galactomannan. 3Biotech, 12(9), 237. https://doi.org/10.1007/s13205-022-03301-4

Kamble, D. B., & Rani, S. (2020). Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): a review. Legume Science, 2(1), e32. https://doi.org/10.1002/leg3.32

Le, B., Pham, T. N. A., & Yang, S. H. (2020). Prebiotic Potential and Anti-Inflammatory Activity of Soluble Polysaccharides Obtained from Soybean Residue. Foods, 9(12), 1808. https://doi.org/10.3390/foods9121808

Lee, H.B., Son, S.U., Lee, J.E., Lee, S.H., Kang, C.H., Kim, Y.S., Shin, K.S., & Park, H.Y. (2021). Characterization, prebiotic and immune-enhancing activities of rhamnogalacturonan-I-rich polysaccharide fraction from molokhia leaves. International journal of biological macromolecules, 175, 443–450. https://doi.org/10.1016/j.ijbiomac.2021.02.019

Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, 2(2), 126-132. https://doi.org/10.1016/j.bcdf.2013.10.002

Markowiak, P., & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426- 428. http://dx.doi.org/10.1021/ac60147a030

Moreno, F.A., & Sanz, M.L. (2014). Food Oligosaccharides: Production, Analysis and Bioactivity (19th ed.). Wiley & Sons. https://doi.org/10.1002/9781118817360.ch19

Pérez-López, E., Cela, D., Costabile, A., Mateos-Aparicio, I., & Rupérez, P. (2016). In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. British Journal of Nutrition, 116(6), 1116–1124. https://doi:10.1017/S0007114516002816

Pérez-López, E., Veses, A.; Redondo, N., Tenorio-Sanz, M., Villanueva, M., Redondo-Cuenca, A., Marcos, A.; Nova, E., Mateos-Aparicio, I., & Rupérez, P. (2018). Soybean okara modulates gut microbiota in rats fed a high-fat diet. Bioactive Carbohydrates and Dietary Fibre, 16, 100–107. http://dx.doi.org/10.1016/j.bcdf.2018.09.002

Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., & Matuchansky, C. (2005). Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits. Alimentary pharmacology & therapeutics, 22(6), 495–512. https://doi.org/10.1111/j.1365-2036.2005.02615.x

Pramasari, D. A., Oktaviani, M., Thontowi, A., Purnawan, A., Ermawar, R. A., Sondari, D., Ningrum, R. S., Laksana, R. P. B., Lianawati, A., Fahrezi, M. Z. M., Salsabila, Q., & Hermiati, E. 2023. The use of hemicellulose acid hydrolysate for hydrolysis of sugarcane trash and its fermentation for producing xylitol. Industrial Crops and Products, 193, 116163. https://doi.org/10.1016/j.indcrop.2022.116163

Ratnadewi, A. A. I., Handayani, W., Oktavianawati, I., Santoso, A. B., & Puspaningsih, N. N. T. 2016. Isolation and Hydrolysis Xylan from Soybean Waste with Endo-β-1,4-D- Xilanase of Bacillus sp. From Soil Termite Abdomen. Agriculture and Agricultural Science Procedia, 9, 371-377. https://doi.org/10.1016/j.aaspro.2016.02.152

Santos, D.C.D., Oliveira Filho, J.G.D., Silva, J.D.S., Sousa, M.F., Vilela, M.D.S., Silva, M.A.P, Lemes, A.C., & Egea, M.B. (2019). Okara flour: its physicochemical, microscopical and functional properties. Food Science & Nutrition, 49(6), 1252-1264. https://doi.org/10.1108/NFS-11-2018-0317

Sher, H., Zeb, N., Zeb, S., Ali, A., B, A., F, I., Su, R., & Mh, R. 2021. Microbial Cellulases: A Review on Strain Development, Purification, Characterization and their Industrial Applications. Journal of Bacteriology and Mycology, 8(5). http://dx.doi.org/10.26420/jbacteriolmycol.2021.1180

Suzuki, A., & Banna, J. (2020). Improving diet quality for chronic disease prevention with okara "Food Waste". American Journal of Lifestyle Medicine, 15(1), 14-18. https://doi.org/10.1177/1559827620960099

Swallah, M.S., Fan, H., Wang, S., Yu, H., & Piao, C. (2021). Prebiotic Impacts of soybean residue (okara) on eubiosis/dysbiosis condition of the gut and the possible effects on liver and kidney functions. Molecules, 26, 326. https://doi.org/10.3390/molecules26020326

Villanueva-Suárez, M. J., Pérez-Cózar, M. L., Mateos-Aparicio, I., & Redondo-Cuenca, A. (2016). Potential fat-lowering and prebiotic effects of enzymatically treated okara in high-cholesterol-fed Wistar rats. International journal of food sciences and nutrition, 67(7), 828–833. https://doi.org/10.1080/09637486.2016.1200016

Wang, X., Zhang, Y., Li, Y., Yu, H., Wang, Y., & Piao, C. 2020. Insoluble dietary fibre from okara (soybean residue) modified by yeast Kluyveromyces marxianus. LWT, 134, 110252. https://doi.org/10.1016/j.lwt.2020.110252

Yoshida, B. Y. & Prudencio, S. H. 2020. Physical, chemical, and technofunctional properties of okara modified by a carbohydrase mixture. LWT, 134, 110141. https://doi.org/10.1016/j.lwt.2020.110141

Downloads

Published

2025-06-23 — Updated on 2025-06-23

Versions

How to Cite

Saman, P., & Khamkongkaew, N. (2025). Enhancement of prebiotic properties of soybean residue using appropriate enzymes. Journal of Science, Technology and Agriculture Research, 6(2), 65–76. retrieved from https://ph02.tci-thaijo.org/index.php/ScienceRERU/article/view/258768