การศึกษาสมการความน่าจะเป็นในการแตกหัก สำหรับเครื่องย่อยแร่แบบแผ่นคู่ขนาดเล็ก

Main Article Content

ศิวโรฒม์ ศิริลักษณ์

Abstract

A laboratory jaw crusher was investigated on the different discharge gap parameters. The results found that a small gap has finer particle size distribution and higher breakage probability.  Five mathematic models were tested to find the best regression coefficient. Furthermore, computing the shape parameter sensitivity was examined by GRG Nonlinear method. The Nikolov (2002) model was the best for this experiment. These results lead to the ANN of the mineral comminution circuit in the future.


Keywords:  crusher, breakage probability, comminution, mineral processing

Article Details

Section
บทความวิจัย (Research Article)

References

[1] Barabady, J. and Kumar, U., 2008. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability engineering & system safety, 93(4), pp.647-653.
[2] Peng, C.L., Scorpio, D.E. and Kibert, C.J., 1997. Strategies for successful construction and demolition waste recycling operations. Construction Management & Economics, 15(1), pp.49-58.
[3] Barabady, J. and Kumar, U., 2007. Reliability characteristics based maintenance scheduling: a case study of a crushing plant. International Journal of Performability Engineering, 3(3), pp.319-328.
[4] Gaskin, H.L. and Lordi, A.C., 1971. Features of Pacific Cement & Aggregates' Moveable Quarry Rock Crushing Plants and Overland Conveyor System. IEEE Transactions on Industry and General Applications, (5), pp.588-601.
[5] Briggs, C.A. and Bearman, R.A., 1996. An investigation of rock breakage and damage in comminution equipment. Minerals Engineering, 9(5), pp.489-497.
[6] Bearman, R.A., Barley, R.W. and Hitchcock, A., 1990. The development of a comminution index for rock and the use of an expert system to assist the engineer in predicting crushing requirements. Minerals Engineering, 3(1-2), pp.117-127.
[7] Campbell, G.M., Bunn, P.J., Webb, C. and Hook, S.C.W., 2001. On predicting roller milling performance: Part II. The breakage function. Powder Technology, 115(3), pp.243-255.
[8] Gupta, A. and Yan, D.S., 2016. Mineral processing design and operations: an introduction. 2nd ed. Elsevier. pp. 265.
[9] Austin, L.G. and Luckie, P.T., 1972. Methods for determination of breakage distribution parameters. Powder Technology, 5(4), pp.215-222.
[10]Whiten, W.J., Walter, G.W. and White, M.E., 1979. A breakage function suitable for crusher models. Fracture at Work, p.19.
[11]Segura-Salazar, J., Barrios, G.P., Rodriguez, V. and Tavares, L.M., 2017. Mathematical modeling of a vertical shaft impact crusher using the Whiten model. Minerals Engineering, 111, pp.222-228.
[12]Attou, A., Clepkens, O. and Gustin, R., 1999. Modelisation de la fragmentation de matiere solide dans un concasseur a chocs a axe horizontal. CTP Report TP, 909, pp.19-28.
[13]Nikolov, S., 2002. A performance model for impact crushers. Minerals Engineering, 15(10), pp.715-721.
[14]Whiten, W.J. and White, M.E., 1979. Modelling and simulation of high tonnage crushing plants. Proc. 12th Int. Mineral Processing Cong. Sao Paulo, Brasil, 2, pp.148-158.
[15]Vogel, L. and Peukert, W., 2004. Determination of material properties relevant to grinding by practicable labscale milling tests. International Journal of Mineral Processing, 74, pp.S329-S338.
[16]Vogel, L. and Peukert, W., 2005. From single particle impact behaviour to modelling of impact mills. Chemical Engineering Science, 60(18), pp.5164-5176.
[17]Wang, D., Burton, R.L., Nahm, M.H. and Soong, S.J., 2008. A four-parameter logistic model for estimating titers of functional multiplexed pneumococcal opsonophagocytic killing assay. Journal of biopharmaceutical statistics, 18(2), pp.307-325.
[18]Prinz, H., 2010. Hill coefficients, dose–response curves and allosteric mechanisms. Journal of chemical biology, 3(1), pp.37-44.
[19]Mukhopadhyay, S.K. and Setaputra, R., 2006. The role of 4PL as the reverse logistics integrator: Optimal pricing and return policies. International Journal of Physical Distribution & Logistics Management, 36(9), pp.716-729.
[20]Denver Equipment Company, 1947. Denver Equipment Index. 2nd ed. Denver Equipment Company, Denver, Cololado, USA: Denver Equipment Company, 1947.