Comparison of catalytic acid pretreatment for improving enzymatic hydrolysis of cellulose in corn stover to bioethanol
Main Article Content
Abstract
The Central Composite based Response Surface Methodology (RSM) (Design-Expert 10.0.1) was used to optimize acid catalyzed pretreatment of corn stover. The experimental of pretreatment was conducted under the acid concentration of 0.05 - 0.15 M using sulfuric acid, formic acid and phosphoric acid as homogeneous promoters. The reaction time of 15 - 45 min were selected. The reaction temperature of 90 - 210°C was selected all the works. After pretreatment, enzymatic hydrolysis was also hydrolyzed the pretreated solid to evaluate the optimal pretreatment conditions for maximizing sugar production. The results showed that pretreatment with 0.1M sulfuric acid at 180°C for 30 min was found to be the optimal condition for pretreatment of corn stover. The optimal condition was focused on the highest sugar production from enzymatic hydrolysis with low inhibitory by-product detected in the aqueous phase after pretreatment. The optimum condition showed 88.93% reducing sugar and 89.26 glucose yield from enzymatic hydrolysis of pretreated corn stover. Hemicellulose solubilization of 85.08% was removed under the optimal condition. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of acid pretreatment on modification of physicochemical properties of corn stover and an efficient approach for its processing in biorefinery industry.
Article Details
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
Annual report 2018; 2018 [cites 2020 June 20]. Available from: http://investor.impact
growthreit.com/misc/ar/20180620-impact-ar-2018-en-03.pdf.
Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science. 2012; 38(4): 449-67.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure. 2008; 1617: 1-16.
Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A. Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy 2014; 62: 362-8.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden. National Renewable Energy Laboratory. 2006.
Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Aue, M, Vogel KP, Simmons BA, Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology. 2010; 101(13): 4900-6.
Shahabazuddin M, Chandra TS, Meena S, Sukumaran R, Shetty N, Mudliar S. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource technology. 2018; 263: 199-206.
Lu X, Zhang Y, Angelidaki I. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresource technology. 2009; 100(12): 3048-53.
Zhao X, Wang L, Lu X, Zhang S. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation. Bioresource technology. 2014; 158: 12-8.
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology. 2010; 101(13), 4851-61.
Suriyachai N, Champreda V, Kraikul N, Techanan W, Laosiripojana N. Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process. 3 Biotech. 2018; 8(5): 221.
Schneider L, Dong Y, Haverinen J, Jaakkola M, Lassi U. Efficiency of acetic acid and formic acid as a catalyst in catalytical and mechanocatalytical pretreatment of barley straw. Biomass and Bioenergy. 2016; 91: 134-42.
Wu W, Rondon V, Weeks K, Pullammanappallil P, Ingram LO, Shanmugam K. Phosphoric acid based pretreatment of switchgrass and fermentation of entire slurry to ethanol using a simplified process. Bioresource technology. 2018; 251: 171-80.
Bao W, Binder T, Abbas C, Loveless L. C1-C2 organic acid treatment of lignocellulosic biomass to produce acylated cellulose pulp, hemicellulose, lignin and sugars and fermentation of the sugars. In. Google Patents, 2014
Ge L, Wang P, Mou H. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable energy. 2011; 36(1): 84-9.
Li J, Zhang R, Siddhu MAH, He Y, Wang W, Li Y, Chen C, Liu G. Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion. Bioresource Technology. 2015; 181: 345-50.
Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, daCosta Sousa L, Melnichenko YB, Dale BE, Simmons BA. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource technology 2011; 102(13): 6928-36.
Mood SH, Golfeshan AH, Tabatabaei M, Abbasalizadeh S, Ardjmand M, Jouzani GS. Comparison of different ionic liquids pretreatment for corn stover enzymatic saccharification. Preparative Biochemistry and Biotechnology. 2014; 44(5): 451-63.
Imman S, Laosiripojana N, Champreda V. Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Applied biochemistry and biotechnology. 2018; 184(2): 432-43.
Zhang P, Dong SJ, Ma HH, Zhang BX, Wang YF, Hu XM. Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Industrial Crops and Products. 2015; 76: 688-96.
Guo J, Catchmark JM. Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydrate polymers. 2012; 87(2): 1026-37.
Tan IS, Lee KT. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydrate Polymers. 2015; 124: 311-21.
Bai F, Anderson W, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology advances. 2008; 26(1): 89-105.
Weerasai K, Suriyachai N, Poonsrisawat, A, Arnthong J, Unrean P, Laosiripojana N, Champreda V. Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources. 2014; 9(4): 5988-6001.
Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry. 2007; 42(5): 834-9.