The Studies of Method for Setup Boundary Conditions for Vehicle Stability Testing on Tilting Platform using Finite Element Analysis

Main Article Content

Jakkree Wichairahad
Chayaruk Thanee Tikakul
Paween Kriangkasem

Abstract

Vehicle stability or rollover resistance on the tilting platform was an essential component of safety, especially in vehicles that used to transport passengers and agricultural trucks. The method of stability testing on the tilting platform can be performed by taking a real vehicle to the tilting platform tester. In order to reduce the waste when taking real vehicles to the stability test on tilting platform and fail the test. Finite element method was therefore used for analyze structures by computer aided engineering analysis before production of structures. This article presented a method for determining the boundary conditions for rollover angle analysis using computer aided engineering. It was analyzed under the static load assumptions and the linear elastic material properties. The results of the computer aided engineering analyzes were compared with the experimental results of a simple structure. The results showed that the maximum error was 63.63% when analyzing with boundary condition type 1 and the result showed that the maximum error was only 2.42% when adjusting the method for setting the boundary condition to type 2. The researchers hope that this study will be beneficial to automotive users in terms of structural safety and for automotive manufacturers in terms of design and manufacture.

Article Details

How to Cite
1.
Wichairahad J, Tikakul CT, Kriangkasem P. The Studies of Method for Setup Boundary Conditions for Vehicle Stability Testing on Tilting Platform using Finite Element Analysis. featkku [internet]. 2023 Dec. 22 [cited 2026 Jan. 24];9(2):103-15. available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/244182
Section
Research Articles

References

ประกาศกรมการขนส่งทางบก. กำหนดเกณฑ์การทรงตัวของรถที่ใช้ในการขนส่งผู้โดยสาร. ราชกิจจานุเบกษา เล่ม 129 ตอนพิเศษ 81 ง หน้า 27: กรุงเทพมหานคร; 2555.

United Nations Economic Commission for Europe (UNECE). Addendum 106: Regulation No. 107 Uniform provisions concerning the approval of category M2 or M3 vehicles with regard to their general construction. Revision3: 2011.

Isermann H. Overturning Limits of Articulated Vehicles with Solid and Liquid Loads. Motor Industry Research Association. 1970; Translation No. 58/70.

Norstrom O and Nordmark S. Test Procedure for the Evaluation of the Lateral Dynamics of Commercial Vehicle Combination. Automobile Industry. 1978; 23(2): 63-9.

Mai L and Sweatman P. Articulated Vehicle Stability – Phase II Tilt Test and Computer Model. Australian Road Research Board. 1984; AIR 323-2.

ประกาศกระทรวงอุตสาหกรรม. ฉบับที่ 2093 (พ.ศ. 2538) ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 เรื่อง กำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม รถใช้งานเกษตรกรรม รถขนส่งเกษตร. ราชกิจจานุเบกษา เล่ม 112 ตอนที่ 103ง. หน้า 63-80: กรุงเทพมหานคร; 2538.

Transit Office Florida Department of Transportation. Crash and Safety Testing Standard for Paratransit Buses. 2nd ed. Acquired by the State of Florida; 2007.

Davis M and Marting P. Predicting Vehicle Rollover Propensity. International Truck and Bus Meeting and Exhibition Detroit; 2002 November 18-20; Michigan, United States of America: 2002.

Wichairahad J, Kaewsarn P, Nisapai W, Tan-Intara-Art S and Chanwiang W. The strength analysis of an agriculture truck chassis using finite element method. Engineering and Applied Science Research. 2016; 43(S2): 267-70.

Wichairahad J, Nisapai W, Kangkham K, Chanwiang W and Sutthi R. The Strength and Stiffness Analysis of Agricultural Truck Chassis using Finite Element Analysis by Flexible Joint Beam Element. Farm Engineering and Automation Technology. 2019; 5(1): 35-48.

United Nations Economic Commission for Europe (UNECE). Addendum 65: Regulation No. 66 Uniform technical prescriptions concerning the approval of large passenger vehicles with regard to the strength of their superstructure. 1st ed; 2006.

National Highway Traffic Safety Administration (NHTS. U.S. Department of Transportation. FMVSS220 Standard School Bus Rollover Protection. Washington DC, United States of America: 1991.

Prochowski L, Zielonka K and Muszynski A. Analysis of the process of double-deck bus rollover at the avoidance of an obstacle having suddenly sprung up. Journal of KONES. 2012; 19: 371-80.

Croccolo D, Agostinis MD and Vincenzi N. Structural Analysis of an Articulated Urban Bus Chassis via FEM: a Methodology Applied to a case study. Journal of Mechanical Engineering 2011; 57(11): 799-809.

Zhilin J, Jingxuan L, Yanjun H and Amir K. Study on Rollover Index and Stability for a Triaxle Bus. Chinese Journal of Mechanical Engineering. 2019; 32: 1-15.

Zulkipli ZH, Mohd Faudzi SA and Abdul Manap AR. Factors Affecting Bus Rollover. Journal of the Society of Automotive Engineers Malaysia. 2019; 3(4): 2-7.

Shun T, Lang W, Chris S, WenCai Z, Yuan J and YanQin C. An Earlier Predictive Rollover Index Designed for Bus Rollover Detection and Prevention. Journal of Advanced Transportation. 2018; 1-10.

Thanaporn T and Supakit R. Influence of suspension parameters on a tilt angle of passenger bus for the stability test. Science, Engineering and Health Studies. 2020; 14(2): 101-108.

Liang CC and Le GN. Analysis of Bus Rollover Protection under Legislated Standard using LS-DYNA Software Simulation Techniques. International Journal of Automotive Technology. 2010; 11(4): 194-506.

Jiantao B, Guangwei M and Wenjie Z. Rollover crashworthiness analysis and optimization of bus frame for conceptual design. Journal of Mechanical Science and Technology. 2019; 33(7): 3363-73.