A Hybrid Model for Path Loss Estimation in Avenue Environment
Main Article Content
บทคัดย่อ
Diverse propagation mechanisms complicate propagation analysis and modeling for a foliage condition. Therefore, a simpler optimized hybrid propagation model, which maintains or improves accuracy but preserves a cooperative relationship with physics, would be insightful. We evaluate an approach for developing a radio-wave propagation prediction model in an avenue area by combining the path loss in free space and environment parameters. It is demonstrated that this two-mechanism hybrid model can provide an accurate fit to the profile of through forest propagation over a long distance, which is impossible with the definitive radiative energy transfer model. The predicted model results were validated using radio-wave propagation in the FM band measurement data. The results obtained from the developed Free-Med model will differ slightly from the measurements under the avenue environment compared to the free space path loss model, Okumura-Hata path loss model, and the Perez-Vega path loss model, as can be seen from the values of the variables MAE and RMSE, which are 1.4966 [dB] and 1.8288 [dB], respectively.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- เนื้อหาและข้อมูลในบทความที่ตีพิมพ์ในวารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศ ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง กองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
- บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ หรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศ ก่อนเท่านั้น
References
Andrusenko, J. et al. (2008). VHF General Urban Path Loss Model for Short Range Ground to Ground Communications. IEEE Transactions on Antennas and Propagation. 56(10): 3302-3310.
Almeida, M.P.C. et al. (2015). Measurements of Field Strength and HD Radio Reception Quality at VHF. IEEE Antennas and Wireless Propagation Letters. 14: 201-204.
Bozomitu, R.G., Hutu, F.D., & De Pinho Ferreira, N. (2021). Drivers’ Warning Application Through Image Notifications on the FM Radio Broadcasting Infrastructure. IEEE Access. 9: 13553-13572.
Hu, Z., Li, S., & Xiang, Y. (2021). Time Information Transmission Based on FM Broadcast Signal. IEEE Access. 9: 16360-16364.
Phruksahiran, N., & Michanan, J. (2021). Iteration Improvement of Taylor-Series Estimation Using Hyperbolic Systems for FM-Radio Source Localization in Bangkok. Signal Image and Video Processing. 15: 247–254.
Ma, J., Li, H. & Gan, L. (2023). Order-Statistic Based Target Detection with Compressive Measurements in Single-Frequency Multistatic Passive Radar. Signal Processing. 203: 108785.
Sarkar, T.K. et al. (2003). A Survey of Various Propagation Models for Mobile Communication. IEEE Antennas and Propagation Magazine. 45(3): 51-82.
Phillips, C., Sicker, D., & Grunwald, D. (2013). A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods. IEEE Communications Surveys & Tutorials. 15(1): 255-270.
Li, H., He, X., & He, W. (2018). Review of Wireless Personal Communications Radio Propagation Models in High Altitude Mountainous Areas at 2.6 GHz. Wireless Personal Communications. 101: 735–753.
Al-Samman, A.M., Hindia, M.N., & Rahman, T.A. (2016). Path Loss Model in Outdoor Environment at 32 GHz for 5G System. In Proceedings of IEEE 3rd International Symposium on Telecommunication Technologies (9-13).
Hampton, J.R. et al. (2019). Drone-Based Forest Propagation Measurements for Ground-to-Air EMI Applications. IEEE Antennas and Wireless Propagation Letters. 18(12): 2627-2631.
De Beelde, B. et al. (2022). Vegetation Loss at D-Band Frequencies and New Vegetation-Dependent Exponential Decay Model. IEEE Transactions on Antennas and Propagation. 70(12): 12092-12103.
Burke, P.J. (2022). 4G Signal Propagation at Ground Level. IEEE Transactions on Antennas and Propagation. 70(4): 2891-2903.
M. E. Diago-Mosquera, M.E. et al. (2022). mmWave Channel Measurements for 3-D Path Loss Analysis and Model Design in Stadiums. IEEE Wireless Communications Letters. 11(9): 2005-2009.
Meng, Y.S., Lee, Y.H., & Ng, B.C. (2009). Empirical Near Ground Path Loss Modeling in a Forest at VHF and UHF Bands. IEEE Transactions on Antennas and Propagation. 57(5): 1461-1468.
Palaios, A., Nilforoushan, M., & Mähönen, P. (2016). Understanding European Forest Radio Propagation Dynamics with in and out of Forest Transmitters. In Proceedings of IEEE Military Communications Conference. (705-710).
Cheffena, M., & Mohamed, M. (2017). Empirical Path Loss Models for Wireless Sensor Network Deployment in Snowy Environments. IEEE Antennas and Wireless Propagation Letters. 16: 2877-2880.
Hejselbæk, J. et al. (2018). Empirical Study of Near Ground Propagation in Forest Terrain for Internet-of-Things Type Device-to-Device Communication. IEEE Access. 6: 54052-54063.
Dias, M.H.C. et al. (2011). Path Loss Measurements of HF/VHF Land Links in a Brazilian Atlantic Rainforest Urban Site. IEEE Antennas and Wireless Propagation Letters. 10: 1063-1067.
MacCartney, G.R., Samimi, M.K., & Rappaport, T.S. (2014). Omnidirectional Path Loss Models in New York City at 28 GHz and 73 GHz. In Proceedings of IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (227-231).
Castellanos, G.D., & Teuta, G. (2017). Urban-Vegetation Ratio Evaluation for Path Loss Model in Amazonian Region for Television Bands. In Proceedings of 47th European Microwave Conference. (699-702).
Sridhar, B., & Ali Khan, M.Z. (2014). RMSE Comparison of Path Loss Models for UHF/VHF Bands in India. In Proceedings of IEEE Region 10 Symposium. (330-335).
Ko, J. et al. (2017). 28 GHz Millimeter-Wave Measurements and Models for Signal Attenuation in Vegetated Areas. In Proceedings of 11th European Conference on Antennas and Propagation. (1808-1812).
Olajuwon, K.H. et al. (2022). Efficacy of some Unpopular Path Loss Propagation Models in the VHF and UHF Bands. In Proceedings of IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development. (1-5).
Azevedo, J.A.R., & Santos, F.E.S. (2011). An Empirical Propagation Model for Forest Environments at Tree Trunk Level. IEEE Transactions on Antennas and Propagation. 59(6): 2357-2367.
Zhang, P. et al. (2020). Measurement-Based 5G Millimeter-Wave Propagation Characterization in Vegetated Suburban Macrocell Environments. IEEE Transactions on Antennas and Propagation. 68(7): 5556-5567.
Zabihi, R., & Vaughan, R.G. (2020). Simplifying Through-Forest Propagation Modelling. IEEE Open Journal of Antennas and Propagation. 1: 104-112.
Myagmardulam, B. et al. (2021). Path Loss Prediction Model Development in a Mountainous Forest Environment. IEEE Open Journal of the Communications Society. 2: 2494-2501.
Juan-Llácer, L. et al. (2022). A Simplified Model for Path Loss Estimation in Citrus Plantations at 3.5 GHz. IEEE Antennas and Wireless Propagation Letters. 21(6): 1183-1187.
T.T. Oladimeji, T.T., Kumar, P., & Oyie, N.O. (2022). Propagation Path Loss Prediction Modelling in Enclosed Environments for 5G Networks: A Review. Heliyon. 8(11): e11581.
Hata, M. (1980). Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Transactions on Vehicular Technology. 29(3): 317-325.
Ayad, M. et al. (2022). Evaluation of Radio Communication Links of 4G Systems. Sensors. 22(10): 3923.
Perez-Vega, C., & Zamanillo, J.M. (2002). Path-Loss Model for Broadcasting Applications and Outdoor Communication Systems in the VHF and UHF Bands. IEEE Transactions on Broadcasting. 48(2): 91-96.
Prasad, M.V.S.N. (2006). Path Loss Exponents Deduced from VHF & UHF Measurements Over Indian Subcontinent and Model Comparison. IEEE Transactions on Broadcasting. 52(3): 290-298.
Ndzi, D.L. et al. (2014). Wireless Sensor Network Coverage Measurement and Planning in Mixed Crop Farming. Computers and Electronics in Agriculture. 105: 83-94.
Barrios-Ulloa, A. et al. (2022). Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review. Sensors. 22(14): 5285.
Ko, J. et al. (2020). Measurements and Analysis of Radio Propagation at 28 GHz in Vegetated Areas of Typical Residential Environments. IEEE Transactions on Antennas and Propagation. 68(5): 4149-4154.