ประมวลองค์ความรู้การรวมข้อมูลแบบฟัซซี

Main Article Content

Tossapon Boongoen

บทคัดย่อ

หลักการและการประยุกต์ใช้การรวมข้อมูลแบบฟัซซีได้รับการยอมรับในช่วงหลายสิบปีที่ผ่านมา ครอบคลุมการใช้งานควบคุมระบบการตัดสินตกลงใจ และการเรียนรู้ของเครื่องตราบจนปัจจุบัน การพัฒนาเชิงทฤษฎียังคงมีมาอย่างต่อเนื่อง เช่น โมเดลการรวมข้อมูลด้วยตัวดำเนินการโอดับบลิวเอ รวมถึงการประยุกต์ ใช้งานกับปัญหาอื่น ๆ จากเหตุผลที่กล่าวมา การประมวลความรู้ตามหลักการนี้จึงมีความสำคัญต่อการสรุป กรอบการวิจัยที่ผ่านมา และทิศทางการพัฒนาในห้วงต่อไป อีกทั้งจะเป็นประโยชน์ต่อทั้งการศึกษาวิทยาการพื้นฐานและการนำไปแก้ไขปัญหาในงานวิจัย

Article Details

รูปแบบการอ้างอิง
[1]
T. Boongoen, “ประมวลองค์ความรู้การรวมข้อมูลแบบฟัซซี”, NKRAFA J.Sci Technol., ปี 13, ฉบับที่ 1, น. 59–66, ส.ค. 2018.
ประเภทบทความ
บทความวิชาการ

เอกสารอ้างอิง

[1] J.Aczel. On weighted of judgements. Aequationes Math, 27: 288-307, 1984.

[2] J.Aczel and C.Alsina. Classification of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. Meth. Opl. Res, 48: 3-22, 1984.

[3] C.Alsina, E.Trillas and L.Valverde. On some logical connectives for fuzzy sets theory. J.Math. Anal. Appl, 93(1): 15-26, 1983.

[4] S.Auephanwiriyakul, J.Keller and P.Gader. Generalized Choquet fuzzy integral fusion. Information Fusion, 3: 69-85, 2002.

[5] G. Beliakov and J.Warren. Appropriate choice of aggregation operators in fuzzy decision support systems. IEEE Trans. Fuzzy Syst, 9(6): 773-784, 2001.

[6] G. Beliakov, A.Pradera and T.Calvo. Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg. New York: Berlin, 2007.

[7] G.Beliakov, T.Calvo and A.Pradera. Handling of neutral information by aggregation operators. Fuzzy Sets Syst, 158: 861-880, 2007.

[8] G.Beliakov, T.Calvo and A.Pradera. Absorbent tuples of aggregation operators. Fuzzy Sets Syst, 158: 1675-1691, 2007.

[9] P.Bonissone. Selecting uncertainty calculi and granularity: An experiment in trading off precision and complexity. Proceedings of the first Workshop on Uncertainty in Artificial Intelligence. Los Angeles: 57 - 66, 1985.

[10] T. Boongoen and Q. Shen. Clus-DOWA: A New Dependent OWA Operator. Proceedings of IEEE International Conference in Fuzzy Systems.
Hong Kong, China, 2008.

[11] G. Bordogna, M. Fedrizzi and G. Pasi. A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. On Systems, Man and Cybernetics - part A, 27(1): 126-133, 1997.

[12] G.Buyukozkan, G. Mauris, O. Feyzioglu and L.Berrah. Providing eluci-dations of web site evaluation based on a multi-criteria aggregation with the Choquet integral. In Int. Fuzzy Systems Association World Congress (IFSA 2003): 131-134, Istanbul, Turkey, 2003.

[13] T.Calvo, B. De Baets and J.Fodor. The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems, 120: 385-394, 2001.

[14] T.Calvo, G.Mayor and R.Mesiar. (Eds.), Aggregation Operators. New York: Physica-Verlag, 2002.

[15] J.R.Chang, T.H. Ho, C.H.Cheng and A.P.Chen. Dynamic fuzzy OWA model for group multiple criteria decision making. Soft Computing,
10: 543-554, 2006.
[16] C.H.Cheng, J.R.Chang, T.H.Ho and A.P.Chen. Evaluating the Airline Service Quality by Fuzzy OWA Operators. Proceedings of the Modeling Decisions for Artificial Intelligence (MDAI): 77-88, Japan, 2005.

[17] G.Choquet. Theory of capacities. Annales de l’Institut Fourier, 5: 131-295, 1953.

[18] V.Cutello and J.Montero. Hierarchies of aggregation operators. International Journal of Intelligent Systems, 9: 1025-1045, 1994.

[19] B.De Baets and J.Fodor. Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets and Systems, 104: 133-136, 1999.

[20] D.Dubois and H.Prade. Triangular norms for fuzzy sets. Proceedings of the 2ndInternational Symposium of Fuzzy Sets, Linz, 39 - 68, 1981.

[21] D.Dubois and H.Prade. A review of fuzzy sets aggregation connectives. Information Sciences, 36: 85 - 121, 1985.

[22] D.Dubois and H.Prade. Weighted minimum and maximum operators in fuzzy set theory. Information Sciences, 39: 205-210, 1986.

[23] D. Dubois, H. Prade and C.Testemale. Weighted fuzzy pattern-matching. Fuzzy Sets and Systems, 28: 313-331, 1988.

[24] D.Dubois, J.L.Marichal, H.Prade, M.Roubens and R.Sabbadin. The use of the discrete Sugeno integral in decision making: a survey. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(5): 539-561, 2001.

[25] D.P. Filev and R.R.Yager. Fuzzy logic controllers with flexible structures. Proc. Second Int. Conf. on Fuzzy Sets and Neural Networks, Iizuka: 317- 320, 1992.

[26] D.Filev and R.R.Yager. On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, 94(2): 157-169, 1998.

[27] J.C. Fodor, R.R.Yager and A. Rybalov. Structure of Uninorms, International Journal of Uncertainty. Fuzziness and Knowledge- Based Systems, 5: 411-427, 1997.

[28] R.Fuller and P.Majlender. An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets and Systems, 124: 53-57, 2001.

[29] R.Fuller and P.Majlender. On obtaining minimal variablity OWA operator weights. Fuzzy Sets and Systems, 136: 203-215, 2003.

[30] P.Gader, W.H.Lee and X.P.Zhang. Renyi entropy with respect to choquet capacities. In Proc. IEEE Conf. Fuzzy Systems. Budapest, Hungary, 2004.

[31] M.Grabisch. On the use of fuzzyintegral as a fuzzy connective. Proceedings of the Second IEEE International Conference on Fuzzy Systems,
San Francisco: 213-218, 1993.

[32] M.Grabisch. Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems, 69: 279-298, 1995.

[33] M.Grabisch, H.T.Nguyen and E.A.Walker. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic, 1995.

[34] M.Grabisch. The application of fuzzy integrals in multicriteria decision making. European J. of Operational Research, 89: 445-456, 1996.

[35] M.Grabisch and F.Huet. Texture recognition by Choquet integral filters, in 6th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU): 1325-1330, Granada, Spain, 1996.

[36] M.Grabisch, S.A.Orlovski and R.R.Yager. Fuzzy aggregations of numerical preferences. In Slowinski R.(ed). Fuzzy Sets in Decision Analysis. Operations Research and Statistics. Kluwer Academic Publishers, 1998.

[37] M.Grabisch. Fuzzy integral for classification and feature extraction. In M.Grabisch, T.Murofushi and M.Sugeno (eds). Fuzzy Measures and Integrals-Theory and Applications: 415-434. Physica Verlag, 2000.

[38] M.Grabisch M, J.Duchene, F. Lino and P.Perny. Subjective evaluation of discomfort in sitting position. Fuzzy Optimization and Decision Making, 1(3): 287-312, 2002.

[39] F.Herrera, E.Herrera-Viedma and J.L.Verdegay. A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems, 78: 73-87, 1996.

[40] F.Herrera and L.Martinez. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Systems, Man and Cybernetics, 8: 746-752, 2000.

[41] F.Herrera and L.Martinez. A model based on linguistic 2-tuple for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision- making. IEEE Transactions on Systems, Man and Cybernetics, 31: 227-234, 2001.

[42] U.Hohle. Probabilistic uniformization of fuzzy topologies. Fuzzy Sets and Systems1, 1978.

[43] J.Kacprzyk and R.R.Yager(eds). The ordered weighted averaging operators: theory and applications. Norwell,MA: Kluwer Academic Publishers, 1997.

[44] J.M. Keller, P.D. Gader and A.K.Hocaoglu. Fuzzy integrals in image processing and recognition, in M.Grabisch. T.Murofushi and M.Sugeno(eds). Fuzzy Measures and Integrals - Theory and Applications: 435-466. Physica Verlag, 2000.

[45] E.P.Klement. A theory of fuzzy measures: a survey, in M.Gupta and E.Sanchez(eds). Fuzzy Information and Decision Processes, North Holland: Amsterdam: 59-66, 1982.

[46] E.P.Klement, R.Mesiar and E.Pap. On the relationship of associative compensatory operators to triangular norms and conforms. International Journal Uncertainty. Fuzziness and Knowledge based Systems, 4(2): 129- 144, 1996.

[47] E.P.Klement, R.Mesiar and E.Pap. Triangular norms, Trends in Logic. Studia Logica Library, 8, Kluwer Academic Publishers, 2000.

[48] G.J.Klir. and T.A.Folger. Fuzzy Sets, Uncertainty and Information. Englewood Cliffs, N.J: Prentice-Hall, 1988.

[49] S.H.Kwon and M. Sugeno. A hierarchical subjective evaluation model using non-monotonic fuzzy measures and the Choquet integral. in M.Grabisc, T.Murofushi and M.Sugeno (eds). Fuzzy Measures and Integrals – Theory and Applications: 375-391. Physica Verlag, 2000.

[50] X.W.Liu and L.H.Chen. The equivalence of maximum entropy OWA operator and geometric OWA operator. International Conference on Machine Learning and Cybernetics: 2673-2676, 2003.

[51] B.Llamazares. Choosing OWA operator weights in the field of Social Choice. Information Sciences, 177(21): 4745-4756, 2007.

[52] M.K. Luhandjula. Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy Sets and Systems, 8: 245-252, 1982.

[53] J.L.Marichal.On Sugeno integral as an aggregation function. Fuzzy Sets and Systems, 114: 347-365, 2000.

[54] M.Mas, G.Mayor and J.Torrens. t-operators, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems, 7(1): 31-50, 1999.

[55] M.Mas, R.Mesiar, M.Monserrat and J.Torrens. Aggregation operators with annihilator. International Journal of General Systems, 34(1): 1-22, 2005.

[56] H.B.Mitchell and D.D.Estrakh. A modified OWA operator and its use in lossless DPCM image compression. International Journal of Uncertain Fuzziness. Knowledge Based Systems, 5 429-436, 1997.

[57] H.B.Mitchell and P.A.Schaefer. Multiple priorities in an induced ordered weighted averaging operator. International Journal ofIntelligent Systems, 15: 317-327, 2000.

[58] T.Murofushi and M.Sugeno. Non-additivity of fuzzy measures representing preferential dependence. In 2nd Int. Conf. on Fuzzy Systems and Neural Networks: 617-620 , Iizuka, Japan, 1992.

[59] T.Murofushi and M.Sugeno. Some quantities represented by the Choquet integral. Fuzzy Sets and Systems, 56: 229-235, 1993.

[60] M.O’Hagan. Aggregating template rule antecedents in real-time expert systems with fuzzy set logic. Proceedings of Annual IEEE Conference on Signals, Systems, and Computers: 681-689, 1988.

[61] J.Quiggin. A theory of anticipated utility. Journal of Economic Behavior and Organization, 3: 323-343, 1982.

[62] T.L.Saaty. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.

[63] B. Schweizer and A. Sklar A. Probabilistic metric spaces. Amsterdam: North-Holland,1983.

[64] U.Segal. Order indifference and rank dependent probabilities. Journal of Math. Economics, 22: 373-397, 1993.

[65] A.Soria-Frisch. Unsupervised construction of fuzzy measures through self-organizing feature maps and its application in color image segmentation. Int. J. Approx. Reason. 41: 23-42, 2006.

[66] M.Sugeno. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974.

[67] V.Torra. The weighted OWA operator. International Journal of Intelligent Systems, 12(2): 153-166, 1997.

[68] V.Torra. Learning weights for the quasi- weighted mean. IEEE Trans. Fuzzy Syst, 10(5): 653-666, 2002.

[69] V.Torra and Y.Narukawa. A View of Averaging Aggregation Operators. IEEE Transaction on Fuzzy Systems, 15(6): 1063-1967, 2007.

[70] V.Torra and Y.Narukawa. Modeling Decisions: Aggregation Operators and Information Fusion. , NewYork : Springer, 2007.

[71] L.Troiano and R.R. Yager. Recursive and iterative OWA operators, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems, 13(6): 579-599, 2005.

[72] A.Tsadiras and K. Margaritis. The MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons. Fuzzy Sets and Systems, 93: 263-274, 1999.

[73] I.B.Turksen. Interval-value fuzzy sets and compensatory AND. Fuzzy Sets and Systems, 51(3): 295-307, 1992.
[74] A.Verkeyn, D.Botteldooren, B.De Baets and

G. De Tr ́e. Sugeno integrals for the modelling of noise annoyance aggregation. In T.Bilgic, B.De Baets and O.Kaynak(eds). Fuzzy Sets and Systems – IFSA, 2003: 277-284. Springer Verlag, 2003.

[75] Z.Wang , K.S.Leung, M.L.Wong, J.Fang and K.Xu. Nonlinear nonnegative multiregressions based on Choquet integrals, Int. J. of Approximate Reasoning, 25:71-87, 2000.

[76] X.Z.Wang and J.F.Chen. Multiple neural networks fusion model based on choquet fuzzy integral. In Proc.3d Int. Conf. Machine Learning and Cybernetics, Shanghai, 2004.

[77] Y.M. Wang and C.Parkan. A minimax disparity approach for obtaining OWA operator weights. Information Sciences, 175: 20-29, 2005.

[78] J.W.Wang, J.R.Chang and C.H.Cheng. Flexible fuzzy OWA querying method for hemodialysis database. Soft Computing, 10(11): 1031-1042, 2006.

[79] Z.Xu. An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8): 843-865, 2005.

[80] Z.Xu. Induced uncertain linguistic OWA operators applied to group decision making. Information Fusion, 7(2): 231-238, 2006.

[81] Z.Xu., Dependent OWA operators, in Proceedings of Int. Conf. on Modeling Decisions for Artificial Intelligence MDAI: 172-178, 2006.

[82] R.R.Yager. On the aggregation of processing units in neural networks. In Proc. 1st IEEE Int. Conf. on Neural Networks, San Diego: 927-933, 1987.

[83] R.R.Yager. A note on weighted queries in information retrieval systems. J. Amer. Soc. Information Sciences, 28: 23-24, 1987.

[84] R.R.Yager. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transaction on Systems, Man and Cybernetics, 18: 183-190, 1988.

[85] R.R.Yager. Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems, 40: 39-75, 1991.

[86] R.R.Yager. OWA Neurons: A new class of fuzzy neurons. in Proc. Int. Joint on Neural Networks, Baltimore: 226-231, 1992.

[87] R.R.Yager. Fuzzy quotient operator. In Proc. Fourth Int. Conf. on In- formation Processing and Management of Uncertainty. Palma de Majorca: 317-322, 1992.





[88] R.R.Yager. L.S.Goldstein and E.Mendels. FUZMAR: an approach to aggregating market research data based on fuzzy reasoning. Fuzzy Sets and Systems, 68(1): 1-11, 1994.
[89] R.R.Yager. Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11: 49-73, 1996.
[90] R.R.Yager and A.Rybalov. Uninorm Aggregation Operators. Fuzzy Sets and Systems, 80: 111-120, 1996.
[91] R.R.Yager and A.Rybalov. Full reinforcement operators in aggregation techniques. IEEE Transactions on Systems. Man and Cybernetics,
28: 757- 769, 1998.
[92] R.R.Yager. Uninorms in fuzzy systems modeling. Fuzzy Sets and Systems, 122: 167-175, 2001.
[93] R.R.Yager. Centered OWA operators. Soft Computing, 11(7): 631-639, 2007.
[94] Y.Zhang and Z.P.Fan. An approach to multiple attribute group decision making with linguistic information based on ETOWA operators. Proceedings of International Conference of Computers and Industrial Engineering, Taiwan, China, 2006.
[95] H.J.Zimmermann and P.Zysno. Latent connectives in human decision making. Fuzzy Sets and Systems, 4: 37-51, 1980.
[96] T.Boongoen, N. Iam-On and B.Undara. Improving Face Detection with Bi-Level Classification Model. NKRAFA Journal of Science and Technology, 12: 52-63, 2016.