Sums of Reciprocal Triangular Numbers

Main Article Content

Lalita Nilasinwong
Kantaphon Kuhapatanakul

Abstract

We consider the infinite sums of the reciprocals of the triangular numbers gif.latex?T_n and gif.latex?T_{n^{2}} . Then, by applying the floor function to the reciprocals of these sums, we obtain the new identities involving the triangular numbers. Further, we give a formula for an alternating sum of the reciprocals of triangular numbers.

Article Details

How to Cite
1.
Nilasinwong L, Kuhapatanakul K. Sums of Reciprocal Triangular Numbers. Prog Appl Sci Tech. [Internet]. 2020 Oct. 8 [cited 2024 Nov. 15];10(2):14-7. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/242160
Section
Mathematics and Applied Statistics

References

Anantakitpaisal P. Kuhapatanakul K. Reciprocal sums of the tribonacci numbers. J. Integer Seq. 2016;19: Article 16.2.1.

Holliday S.H, Komatsu T. On the sum of reciprocal generalized Fibonacci numbers. INTEGERS 2011;11A.

Kuhapatanakul K. On the sums of reciprocal generalized Fibonacci numbers. J. Integer Seq. 2013;16:Article 13.7.1.

Kuhapatanakul K. Alternating sums of reciprocal generalized Fibonacci numbers. Springerplus 2014;3(485):1-5.

Ohtsuka H, Nakamura S. On the sum of reciprocal Fibonacci numbers. Fibonacci Quart. 2008/2009;46/47 :153-159.

Wenpeng Z, Tingting W. The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 2012; 218:6164–7.

Xin L. Some identities related to the Riemann zeta-function. J. Inequal. Appl. 2016;32:1-6.

Xu H. Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl. 2016;132:1-7.