Sums of Reciprocal Triangular Numbers
Main Article Content
Abstract
We consider the infinite sums of the reciprocals of the triangular numbers and . Then, by applying the floor function to the reciprocals of these sums, we obtain the new identities involving the triangular numbers. Further, we give a formula for an alternating sum of the reciprocals of triangular numbers.
Article Details
References
Anantakitpaisal P. Kuhapatanakul K. Reciprocal sums of the tribonacci numbers. J. Integer Seq. 2016;19: Article 16.2.1.
Holliday S.H, Komatsu T. On the sum of reciprocal generalized Fibonacci numbers. INTEGERS 2011;11A.
Kuhapatanakul K. On the sums of reciprocal generalized Fibonacci numbers. J. Integer Seq. 2013;16:Article 13.7.1.
Kuhapatanakul K. Alternating sums of reciprocal generalized Fibonacci numbers. Springerplus 2014;3(485):1-5.
Ohtsuka H, Nakamura S. On the sum of reciprocal Fibonacci numbers. Fibonacci Quart. 2008/2009;46/47 :153-159.
Wenpeng Z, Tingting W. The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 2012; 218:6164–7.
Xin L. Some identities related to the Riemann zeta-function. J. Inequal. Appl. 2016;32:1-6.
Xu H. Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl. 2016;132:1-7.