# การคำนวณหาประจุไฟฟ้าที่เป็นฟังก์ชันของเวลาในวงจร RLC ภายใต้แรงดันที่เป็นฟังก์ชันของCosine การคำนวณหาปรจุไฟฟ้าที่เป็นฟังก์ชันของเวลาในวงจร RLC ภายใต้แรงดันที่เป็นฟังก์ชันของSine

## บทคัดย่อ

In this work, we developed a model of mathematics and physics for the series of the RLC circuit loop. The purpose of this study is to evaluate for finding the time-dependent electric charge that is a consequence of time-dependent voltage force. Which the voltage force is in the cosine function. We calculated by using the second-order non-homogeneous ordinary differential equation and integration by part technique. Wecan find that the time-dependent electric charge corresponds to capacitance but is inversely proportional to induction. The time-dependent electric charge is in contrast to the charge. If and have slightly differentvalues the time-dependentelectric charge behaves like an oscillation wave group.

How to Cite
บท
บทความวิจัย

## References

Mohazzab, J., Hussain, A.,Muhammad, Q.,&Mohsin, S. (2008). RLC Circuit Response and Analysis (Using State Space Method). IJCSNS International of Computer Science and Network Security, 8(4), 48-54.

Sonam,P. (2015). Analyzing the Response of an RLC Circuit. International Journal of Scientific and Research Publications, 5(7), 1-2.

Dino, K.(2019). Negative capacitance or inductive loop-A general assessment of a common low frequency impedance feature, Electrochemistry Communications, 98, 58-62.

Ahammodullah, H.,Md-Abdul, H.& Md. Al-Amin M. (2019). Application of Linear Differential Equation in an Analysis Transient and Steady Response for Second Order RLC Closed Series Circuit, American Journal of Circuits,Systems and Signal Processing, 5(1), 1-8.

Tikjha, W., Normai, T., Jittburus, U., & Pumila, A. (2018). Periodic with period 4 of a piecewise linear system of differential equations with initial conditions being some points on positive y axis. PSRU Journal of Science and Tehnology, 3(2), 26-34.

Hutem A. and Masoongnoen N.,(2021), SOLVE THE SERIES OF RLC CIRCUIT VIA THE TIME-DEPENDENT VOLTAGE SINE FUNCTION USING WRONSKIAN’S OF DIFFERENTIAL EQUATION, PSRU Journal of Science and Tehnology, 6(2): pp. 22-35

Riley, K.F.,& Hobson, M.P. (2006). Mathematical Methods for Physics and Engineering. (3th ed.). New York: Cambridge University Press.

Sokol P. E., Warren G., Zheng B. & Smith P. (2013). A circuit to demonstrate phase relationships in RLC circuits, Physics Education, 48(3), 312-318

Kishore Lal K., (2008), Electronic circuit analysis, second edition, BS Publication

Teoh Ai K. and Rahifa R.,(2018), COMPARISON OF NUMERICAL TECHNIQUES IN SOLVING TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS, ARPN Journal of Engineering and Applied Sciences, VOL. 13, NO. 1, pp. 314-320

Elo·ısa Garcia–C. and Romeo O., (2004), A new passivity property of linear RLC

circuits with application to Power Shaping Stabilization, Proceedings of the American Control Conference, pp.1428-1433

Atamp A.,(1990), Introduction to classical mechanics, Prentice-Hall, United States America, pp.55-63

Susan M.,(2004), Mathematics for physicsts, Thomson Brooks, United States America, pp.169-175

Goldstein P. and Safko.,(2002), Classical mechanics, 3th ed., Prentice-Hall, United States America, pp.238-259

Sadri H.,(1991), Foundations of mathematical physics, Prentice-Hall, United States America, pp.525-560