Stepper Motor Damage Prediction Using Machine Learning Algorithms
Main Article Content
Abstract
This study presents a method for predicting stepper motor failures in modern automation systems by collecting data from five types of sensors: current, voltage, torque, temperature, and vibration, along with timestamp records and motion error measurements over a three-month period. The study compares the performance of three machine learning algorithms: Gradient Boosted Trees, Deep Learning, and Extreme Gradient Boosting. The results indicate that Gradient Boosted Trees achieves the highest accuracy at 91.17% and can predict a 90% probability of failure within 5 to 6 months. Feature importance analysis reveals that temporal factors and vibration have the most significant impact on motor degradation, accounting for 55.32% and 28.35%, respectively. These findings can be applied to predictive maintenance planning to minimize unplanned production line downtime and enhance overall production efficiency.
Keywords: Stepper Motor, Failure Prediction, Machine Learning, Gradient Boosted Trees, Predictive Maintenance
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวารสารวิทยาศาสตร์และเทคโนโลยีถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวารสารวิทยาศาสตร์และเทคโนโลยีถือเป็นลิขสิทธิ์ของวารสารวารสารวิทยาศาสตร์และเทคโนโลยีหากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวารสารวิทยาศาสตร์และเทคโนโลยี ก่อนเท่านั้น
References
Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. Ieee Access, 6, 6505-6519.
Lei, Y., Jia, F., Lin, J., Xing, S., & Ding, S. X. (2016). An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on, 63(5), 3137-3147.
Liu, Y., Zhou, H., Tsung, F., & Zhang, S. (2019). Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks. Computers & Industrial Engineering, 136, 494-503.
Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5), 77-90.
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2014). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820.
Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of manufacturing systems, 48, 144-156.
Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316.
Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Systems Journal, 13(3), 2213-2227.