The Effects of Dolomite Addition on the Properties of Aluminium Dross Residue-Based Geopolymer Material
Main Article Content
Abstract
Aluminium Dross (AD) is a waste product from the aluminium recycling process, which often faces high disposal costs and illegal dumping issues. The chemical composition analysis revealed a high amount of aluminium compounds and a small amount of silica in AD. In this research, the development of a geopolymer using AD as the main raw material was conducted. Dolomite in the range of 0-30 wt% was added as an additive. In the production of geopolymers, the mixed alkaline solution used as a reaction activator was the mixture of sodium hydroxide (NaOH, 7 M) and sodium silicate (Na₂SiO₃) in a ratio of 1:3. The solid raw materials and alkaline liquid were mixed at a liquid-to-solid ratio of 0.5. The results show that AD residue generates ammonia gas, resulting in a highly porous material with low compressive strength. However, the addition of dolomite enhances material strength as the highest compressive strength was obtained in the sample with 10 wt% dolomite. Further additions of dolomite (20-30 wt%) into the mixtures resulted in lower strength. Additionally, the phase structure, microstructure, and chemical structural changes were investigated using XRD, SEM, and FTIR techniques, respectively. The results indicated that this AD based geopolymer with 10 wt% dolomite established reasonable properties for the lightweight material application.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวารสารวิทยาศาสตร์และเทคโนโลยีถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวารสารวิทยาศาสตร์และเทคโนโลยีถือเป็นลิขสิทธิ์ของวารสารวารสารวิทยาศาสตร์และเทคโนโลยีหากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวารสารวิทยาศาสตร์และเทคโนโลยี ก่อนเท่านั้น
References
Aziz, I., Abdullah, M.M.A. B., Yong, H., & Ming, L. (2019). Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Advances in Cement Research, 32, 1-28. doi:10.1680/jadcr.18.00162.
Aizat, E.A., Abdullah, M.M.A., Liew Y.M., & Heah, C.Y. (2018). Dolomite/fly ash alkali activated geopolymer strengths with the influence of solid/liquid ratio. AIP Conference Proceeding: Proceeding of the 4th International Conference on Green Design and Manufacture 2018: Advanced and emerging applications, Ho Chi Minh, Vietnam, 2030(1). doi:10.1063/1.5066915.
Aizat, E.A., Abdullah, M.M.A., Vizureanu, P., Salleh, M.A.A.M., Sandu, A.V., Chaiprapa, J., Yoriya, S., Hussin, K. & Aziz, I.H. (2020) Strength development and elemental distribution of dolomite/fly ash geopolymer composite under elevated temperature. Materials (Basel), 13(4):1015. doi:10.3390/ma13041015.
Arkame, Y., Harrati, A., Jannaoui, M., Et-Tayea, Y., Yamari, I., Sdiri, A., & Sadik, C. (2023). Effects of slag addition and sintering temperature on the technological properties of dolomite based porous ceramics. Open Ceramics, 13, 100333. doi:10.1016/j.oceram.2023.100333.
Ashfaq, M., Sharif, M., Irfan-ul-Hassan, M., Sahar, U., Akmal, U., & Mohamed, A. (2024). Up-scaling of fly ash-based geopolymer concrete to investigate the binary effect of locally available metakaolin with fly ash. Heliyon, 10, e26331. doi:10.1016/j.heliyon.2024.e26331.
Choo, T.F., Mohd Salleh, M.A., Kok, K Y., Matori, K.A., & Abdul Rashid, S. (2020). Characterization of High-Temperature Hierarchical Porous Mullite Washcoat Synthesized Using Aluminium Dross and Coal Fly Ash. Crystals, 10(3). doi:10.3390/cryst10030178.
Dirisu, J.O., Fayomi, O.S.I., Oyedepo, S.O., Jolayemi, K.J., & Moboluwarin, D.M. (2019). Critical evaluation of aluminium dross composites and other potential building ceiling materials. Procedia Manufacturing, 35, 1205-1210. doi:10.1016/j.promfg.2019.06.078.
Elseknidy, M.H., Salmiaton, A., Nor Shafizah, I., & Saad, A.H. (2020). A Study on Mechanical Properties of Concrete Incorporating Aluminium Dross, Fly Ash, and Quarry Dust. Sustainability, 12(21). doi:10.3390/su12219230.
Lv, S., Ni, H., Wang, X., Ni, W., & Wu, W. (2022). Effects of Hydrolysis Parameters on AlN Content in Aluminium Dross and Multivariate Nonlinear Regression Analysis. Coatings, 12(5). doi:10.3390/coatings12050552.
McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A., & Corder, G.D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9), 1080-1090. doi:10.1016/j.jclepro.2011.02.010.
Naghizadeh, A., Tchadjie, L.N., Ekolu, S.O., & Welman-Purchase, M. (2024). Circular production of recycled binder from fly ash-based geopolymer concrete. Construction and Building Materials, 415, 135098. doi:10.1016/j.conbuildmat.2024.135098.
Poonyakanok, W. (n.d.) Green concrete. Retrieved from https://risc.in.th/th/knowledge/.
Puksisuwan, P., Laoratanakul, P., & Cherdhirunkorn, B. (2018). Utilization of aluminium dross as a main raw material for synthesis of geopolymer. Journal of Metals, Materials and Minerals, 27(2).
Rashad, A.M. (2013). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer. Construction and Building Materials, 47, 29-55. doi:10.1016/j.conbuildmat.2013.04.011.
Shobeiri, V., Bennett, B., Xie, T., & Visintin, P. (2021). A comprehensive assessment of the global warming potential of geopolymer concrete. Journal of Cleaner Production, 297, 126669. doi:https://doi.org/10.1016/j.jclepro.2021.126669.
Stafford, F.N., Dias, A.C., Arroja, L., Labrincha, J.A., & Hotza, D. (2016). Life cycle assessment of the production of Portland cement: a Southern Europe case study. Journal of Cleaner Production, 126, 159-165. doi:10.1016/j.jclepro.2016.02.110.
Thunuguntla, C.S., & Gunneswara Rao, T.D. (2018). Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Construction and Building Materials, 193, 173-188. doi:10.1016/j.conbuildmat.2018.10.189.
Tonnayopas, D., Saelee, P., & Chantaramanee, S. (2011). Production of Lightweight Ceramic Tile from Kaolin Refining Waste and Addition of Dolomite and Waste Clay Brick. Thaksin University Journal, 14(2), 140-148.
Toobpeng, N., Thavorniti, P., & Jiemsirilers, S. (2024). Effect of additives on the setting time and compressive strength of activated high-calcium fly ash-based geopolymers. Construction and Building Materials, 417, 135035. doi:10.1016/j.conbuildmat.2024.135035.
Xu, H., & Van Deventer, J.S.J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247-266. doi:10.1016/S0301-7516(99)00074-5.
Zarina, Y., Abdullah, A. M., & Ahmad, M. A. (2014). The effect of dolomite incorporation on the properties of boiler ash-based geopolymer. In Applied Mechanics and Materials (Vol. 660, pp. 289-293). Trans Tech Publications.