Direct chromosomal preparation protocol from old world tarantulas (Araneae, Theraphosidae)
Keywords:
Chromosome, Chilobrachys, Cyriopagopus, Selenocosminae, OrnithoctoninaeAbstract
The Theraphosidae (Thorell, 1869) is the most prevalent family in the suborder Mygalomorpae, but little is known about their cytogenetics, nor have the chromosomes of old-world tarantulas been studied. This study aims to develop an efficient protocol for chromosomal tarantula preparation in which chromosomes are extracted directly from the internal organs of spiders following in vivo colchicine treatment. Chilobrachys (Karsch, 1892) and Cyriopagopus (Simon, 1888), which belong to different subfamilies, were chosen as validation models. The results indicate that the protocol for preparing chromosomes from both subfamilies is effective, suggesting that Southeast Asian tarantulas are probable to have bi-arms chromosomes and a high proportion of diploid number (2n). Interestingly, diploid chromosomes contain chromosomal gaps on many chromosomes, which will be investigated in the future to facilitate a greater understanding.
References
Araujo, D., Rheims, C. A., Brescovit, A. D., & Cella, D. M. (2008). Extreme degree of chromosome number variability in species of the spider genus Scytodes (Araneae, Haplogynae, Scytodidae). Journal of Zoological Systematics and Evolutionary Research, 46(2), 89- 95. https://doi.org/10.1111/j.1439- 0469.2007.00457.x.
Araujo, D., Schneider, M. C., Paula-Neto, E. & Cella, D. M. (2012). Sex chromosomes and meiosis in spiders: a review. In Swan, A. (Ed.) Meiosis - Molecular mechanisms and cytogenetic diversity (pp.87- 108).
Clerck, C. (1757). Svenska Spindlar uti sina hufvud-slågter indelte samt under några och sextio särskildte arter beskrefne och med illuminerade figurer uplyste / Aranei Svecici, descriptionibus et figuris æneis illustrati, ad genera subalterna redacti, speciebus ultra LX determinati. Laurentius Salvius.
Dobigny, G., Ducroz, J. F., Robinson, T. J., & Volobouev, V. (2004). Cytogenetics and cladistics. Systematic Biology, 53, 470-484. https://doi. org/10.1080/10635150490445698.
Dolejš, P., Kořínková, T., Musilová, J., Opatová, V., Kubcová, L., Buchar, J., & Král, J. (2011). Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). European Journal of Entomology, 108(1), 1-16. https://doi. org/10.14411/eje.2011.001.
Juntaree, S. & Supiwong, W. (2000). Standardized karyotype and Idiogram of the glass goby fish (Gobiopterus chuno) (Hamilton, 1822) in Thailand. Science Technology and Engineering Journal (STEJ), 6(2), 72-81.
Karsch, F. (1892). Arachniden von Ceylon und von Minikoy gesammelt von den Herren Doctoren P. und F. Sarasin. Berliner Entomologische Zeitschrift, 36(2), 267-310
Král, J., Kořínková, T., Forman, M., & Krkavcová, L. (2011). Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenetic and Genome Research, 133(1), 43-66. https://doi.org/10.1159/000323497.
Král, J., Kořínková, T., Krkavcová, L., Musilová, J., Forman, M., Herrera, I. M. Á., Haddad, C. R., Vítková, M., Henriques, S., Vargas, J. G. P., & Hedin, M. (2013). Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society, 109(2), 377-408. https:// doi.org/10.1111/bij.12056.
Kumbiçak, Z., Karataş, A., Kumbiçak, Ü., & Seyyar, O. (2013). Karyological data and meiosis of Drassyllus praeficus (L. Koch, 1866) (Gnaphosidae) and Thanatus imbecillus (L. Koch, 1878) (Philodromidae) from Turkey. Turkish Journal of Zoology, 37, 200-204. https://doi.org/10.3906/ zoo-1203-8.
Kumbiçak, Z., Ekiz, E., & Çiçekli, S. (2014). Karyotypes of six spider species belonging to the families Gnaphosidae, Salticidae, Thomisidae, and Zodariidae (Araneae) from Turkey. Comparative Cytogenetics, 8(2), 93-101. https:// doi.org/10.3897/compcytogen. v8i2.6065.
Neto, J. P. da C. P., Goll, L. G., Gross, M. C., Feldsberg, E., & Schneider, C. H. (2020). Cytogenetic analysis of three Ctenidae species (Araneae) from the Amazon. Genetics and Molecular Biology, 43(4), 1-6. https://doi.org/10.1590/1678-4685- GMB-2020-0069.
Paula-Neto, E., Araujo, D., Carvalho, L. S., Cella, D. M., & Schneider, M. C. (2013). Chromosomal characteristics of a Brazilian whip spider (Amblypygi) and evolutionary relationships with other arachnid orders. Genetics and Molecular Research, 12(3), 3726-3734. https://doi.org/10.4238/2013. September.19.3.
Pocock, R. I. (1895). On a new and natural grouping of some of the Oriental genera of Mygalomorphae, with descriptions of new genera and species. The Annals and Magazine of Natural History; Zoology, Botany, and Geology, 15, 165-184.
Schmidt, G. & Huber, S. (1996). Chilobrachys huahini sp. n. (Araneida: Theraphosidae: Selenocosmiinae), eine Vogelspinne aus Thailand. Arachnologisches Magazin 4(1), 1-7.
Simon, E. (1886). Arachnides recueillis par M. A. Pavie (sous chef du service des postes au Cambodge) dans le royaume de Siam, au Cambodge et en Cochinchine. Actes de la Société Linnéenne de Bordeaux, 40, 137-166.
Simon, E. (1887). Etude sur les arachnides de l’Asie méridionale faisant partie des collections de l’Indian Museum (Calcutta). I. Arachnides recueillis à Tavoy (Tenasserim) par Moti Ram. Journal of the Asiatic Society of Bengal, part II (Natural History), 56(1), 101-117.
Simon, E. (1889). Arachnides. In Voyage de M. E. Simon au Venezuela (décembre 1887-avril 1888). 4e Mémoire. Annales Société entomologique de France, 6(9), 169-220.
Smith, A. M. (1996). A new species of Haplopelma ( A r a n e a e : Theraphosidae), with notes on two close relatives. Mygalomorph 1, 21-32.
Srisamoot, T., Supiwong, W., Sriwattanarothai, N., Panijpan, B., Srisamoot, N., & Tanomtong, A. (2021). Karyotype of four mouth-brooding Betta fishes (Betta Bleeker, 1850) in Thailand. Science Technology and Engineering Journal (STEJ), 7(1), 22-31.
Souza, L. H. B., Brescovit, A. D., & Araujo, D. (2017). A new species of Synotaxus and the first chromosomal study on Synotaxidae, presenting a rare XY sex chromosome system in spiders (Araneae, Araneoidea). Zootaxa, 4303(1), 140-150. https:// doi.org/10.11646/zootaxa.4303.1.9.
Souza, L. H. B., Silva, B. C., Costa, C. C., Brescovit, A. D., Rincão, M. P., Dias, A. L., & Araujo, D. (2021). First chromosomal analysis in Deinopidae (Araneae) reveals Sex Chromosome System X1X2X3X4, B chromosomes and polymorphism for centric fusion. Zoology, 146, 125906. https://doi.org/https://doi. org/10.1016/j.zool.2021.125906.
Stávale, L. M., Schneider, M. C., Brescovit, A. D., & Cella, D. M. (2011). Chromosomal characteristics and karyotype evolution of Oxyopidae spiders (Araneae, Entelegynae). Genetics and Molecular Research, 10(2), 752-763. https:// doi.org/10.4238/vol10-2gmr1084.
Thorell, T. (1869). On European spiders. Review of the European genera of spiders, preceded by some observations on zoological nomenclature [first part]. Nova Acta Regiae Societatis Scientiarum Upsaliensis, 7(5), 1-108.
Ubinski, C. V., Carvalho, L. S., & Schneider, M. C. (2018). Mechanisms of karyotype evolution in the Brazilian scorpions of the subfamily Centruroidinae (Buthidae). Genetica, 146(6), 475-486. https:// doi.org/10.1007/s10709-018-0038-7.
World Spider Catalog. (2022). World Spider Catalog (Version 23.5) [Data set]. Natural History Museum Bern. https://doi.org/10.24436/2
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Science Technology and Engineering Journal (STEJ)
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.