Lactic acid bacteria profiles associated to Thai traditional fermented foods

Authors

  • Md Faridunnabi Nayem Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Arin Buranasajja Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Hongfah Boonsuksom Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Noppasorn Suknuntee Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Ailada Kongjui Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Chanchai Boonla Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
  • Nattida Chotechuang Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand

Keywords:

Probiotic, antioxidant activity, acid-bile tolerance, hydrophobicity, DPPH

Abstract

Probiotics are health promoting gut microbiota which has been used in commercial products to extend its benefits for supporting the gut function and immunity. Besides these, probiotics contribute to reducing blood cholesterol, diabetics, coronary heart disease, and allergic symptoms as well as improving mood along with cognitive activities, reducing skin aging, and promoting longevity. Probiotics aid in promoting longevity as a function of antioxidant activity which allows it to be a potential source of supplement. These factors open an interesting prospect of screening well known probiotics community containing higher antioxidant activity from various Thai local fermented foods. This study aimed to screen targeted lactic acid bacteria (LAB) from 15 plant and animal based Thai local fermented foods by CaCO3 containing MRS agar and analyzed its antioxidant and probiotic properties. It was found that all 11 isolates considered as potential LAB as it had shown clear zone on CaCO3 containing MRS agar, exhibited over 70% inhibition of DPPH in both supernatant and pellet. But only one isolate from plant based fermented food showed potential probiotic properties, including acid-bile tolerance, hydrophobicity, and antimicrobial activity, and it was the one that had the highest antioxidant  activity. This isolated strain might be further analyzed and developed as a potential longevity promoting supplement.

References

Adamberg, K., Kask, S., Laht, T. M., & Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International journal of food microbiology, 85(1-2), 171-183.

Bautista-Gallego, J., Arroyo-López, F. N., Rantsiou, K., Jiménez-Díaz, R., Garrido-Fernández, A., & Cocolin, L. (2013). Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International, 50(1), 135-142.

Cui, M., Kim, H. Y., Lee, K. H., Jeong, J. K., Hwang, J. H., Yeo, K. Y., Ryu, B. H., Choi, J. H., & Park, K. Y. (2015). Antiobesity effects of kimchi in diet-induced obese mice. Journal of Ethnic Foods, 2(3), 137-144.

Das, G., Paramithiotis, S., Sundaram Sivamaruthi, B., Wijaya, C. H., Suharta, S., Sanlier, N., Shin, H. S., & Patra, J. K. (2020). Traditional fermented foods with anti-aging effect: A concentric review. Food Research International, 134,109269.

Deepika, G., Green, R. J., Frazier, R. A., & Charalampopoulos, D. (2009). Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. Journal of Applied Microbiology, 107(4), 1230-1240.

Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31(6), 438-442.

Fei, Y., Li, L., Zheng, Y., Liu, D., Zhou, Q., & Fu, L. (2018). Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes. LWT, 90, 460-468.

FAO UN & WHO. (2006). Probiotics in food: Health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition Paper, 85.

Harrigan, W. F., & McCance, M. E. (1976). Laboratory methods in food and dairy microbiology. Academic Press Inc.

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The international scientific association for probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514.

Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and Microbial Technology, 26 (2-4), 87-107.

Horsburgh, M. J., Wharton, S. J., Karavolos, M., & Foster, S. J. (2002). Manganese: Elemental defence for a life with oxygen. Trends in Microbiology, 10(11), 496-501.

Ho, S. T., Hsieh, Y. T., Wang, S. Y., & Chen, M. J. (2019). Improving effect of a probiotic mixture on memory and learning abilities in d-galactose-treated aging mice. Journal of Dairy Science, 102(3), 1901-1909.

Hwanhlem, N., Watthanasakphuban, N., Riebroy, S., Benjakul, S., H-Kittikun, A., & Maneerat, S. (2010). Probiotic lactic acid bacteria from Kung-Som: isolation, screening, inhibition of pathogenic bacteria. International Journal of Food Science & Technology, 45(3), 594-601.

Kanner, J., & Lapidot, T. (2001). The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radical Biology and Medicine, 31(11), 1388-1395.

Kim, H., Kim, J. S., Kim, Y., Jeong, Y., Kim, J. E., Paek, N. S., & Kang, C. H. (2020). Antioxidant and probiotic properties of Lactobacilli and Bifidobacteria of human origins. Biotechnology and Bioprocess Engineering, 25(3), 421-430.

Kim, B., Park, K. Y., Kim, H. Y., Ahn, S. C., & Cho, E. J. (2011). Anti-aging effects and mechanisms of kimchi during fermentation under stress-induced premature senescence cellular system. Food Science and Biotechnologre senescence cellular system. Food Science and Biotechnology, 20(3), 643-649.

Khullar, G., Det-udom, R., Prombutar, P., & Prakitchaiwattana, C. (2022). Probiogenomic analysis and safety assessment of Bacillus isolates using Omics approach in combination with In-vitro. LWT, 159, 113216.

Lee, D. E., Huh, C. S., Ra, J., Choi, I. D., Jeong, J. W., Kim, S. H., ... & Ahn, Y. T. (2015). Clinical evidence of effects of Lactobacillus plantarum HY7714 on skin aging: a randomized, double blind, placebo-controlled study. Journal of Microbiology and Biotechnology, 25(12), 2160-2168.

Li, B., Evivie, S. E., Lu, J., Jiao, Y., Wang, C., Li, Z., & Huo, G. (2018). Lactobacillus helveticus KLDS1. 8701 alleviates d-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food & function, 9(12), 6586-6598.

Li, M., He, Z., He, L., Li, C., Tao, H., Ye, C., Liu, L., Zeng, X., & Ran, G. (2022). Effect of fermentation parameters on the anthocyanin content, sensory properties, and physicochemical parameters of potato blueberry yogurt. Fermentation, 8(10), 489.

Li, S. Y., Zhao, Y. J., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., & Wang, Q. (2012). Antioxidant activity of lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914-1919.

Liu, C. F., & Pan, T. M. (2010). In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. Journal of Food and Drug Analysis, 18(2), 8.

Lin, S. W., Tsai, Y. S., Chen, Y. L., Wang, M. F., Chen, C. C., Lin, W. H., & Fang, T. J. (2021). Lactobacillus plantarum GKM3 Promotes Longevity, Memory Retention, and Reduces Brain Oxidation Stress in SAMP8 Mice. Nutrients, 13(8), 2860.

Mantzourani, I., Terpou, A., Alexopoulos, A., Kimbaris, A., Bezirtzoglou, E., Koutinas, A. A., & Plessas, S. (2019). Production of a potentially synbiotic pomegranate beverage by fermentation with Lactobacillus plantarum ATCC 14917 adsorbed on a prebiotic carrier. Applied Biochemistry and Biotechnology, 188(4), 1096-1107.

Marsova, M., Poluektova, E., Odorskaya, M., Ambaryan, A., Revishchin, A., Pavlova, G., & Danilenko, V. (2020). Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models. World Journal of Microbiology and Biotechnology, 36, 1-10.

Martins, F. S., Silva, A. A., Vieira, A. T., Barbosa, F. H., Arantes, R. M., Teixeira, M. M., & Nicoli, J. R. (2009). Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Archives of Microbiology, 191, 623-630.

McCoy, S., & Gilliland, S. E. (2007). Isolation and characterization of Lactobacillus species having potential for use as probiotic cultures for dogs. Journal of Food Science, 72(3), 94-97.

Mora, L., Escudero, E., Aristoy, M. C., & Toldrá, F. (2015). A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. International Journal of Food Microbiology, 212, 41-48.

Nakagawa, H., Shiozaki, T., Kobatake, E., Hosoya, T., Moriya, T., Sakai, F., & Miyazaki, T. (2016). Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell, 15(2), 227-236.

Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451-469.

Nikoskelainen, S., Ouwehand, A. C., Bylund, G., Salminen, S., & Lilius, E. M. (2003). Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish & Shellfish Immunology, 15(5), 443-452.

Park, M. R., Ryu, S., Maburutse, B. E., Oh, N. S., Kim, S. H., Oh, S., ... & Kim, Y. (2018). Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Scientific Reports, 8(1), 7441.

Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171-1185.

Promchote, P.T. (2017). Chemical compositions and antioxidant properties of Pla-ra Thai indigenous fermented fish product. Journal of Science and Technology Ubon Ratchathani University, 19(2), 159-172.

Reungsang, A., Tungwongchai R. & Chaiyachet, O. (2006). Quality indices of Plaa-som produced in the Northeastern part of Thailand. KU Science Journal, 24 (1-3), 20-36.

Ruiz, L., Margolles, A., & S´anchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396.

Runglerdkriangkrai, J., Hinsui, J. Maneerote, J. (2015). Fishery product science and technology. Kasetsart University Press.

Russo, P., de la Luz Mohedano, M., Capozzi, V., de Palencia, P. F., L´opez, P., Spano, G., & Fiocco, D. (2012). Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. International Journal of Molecular Sciences, 13(9), 10680-10696.

Schifano, E., Zinno, P., Guantario, B., Roselli, M., Marcoccia, S., Devirgiliis, C., & Uccelletti, D. (2019). The foodborne strain Lactobacillus fermentum MBC2 triggers pept-1-dependent pro-longevity effects in Caenorhabditis elegans. Microorganisms, 7(2), 45.

Servin, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28(4), 405-440.

Singh, V. P., Sharma, J., Babu, S., Rizwanulla, & Singla, A. (2013). Role of probiotics in health and disease: a review. JPMA. The Journal of the Pakistan Medical Association, 63(2), 253-257.

Sivamaruthi, B. S., Prasanth, M. I., Kesika, P., & Chaiyasut, C. (2019). Probiotics in human mental health and diseases-A minireview. Tropical Journal of Pharmaceutical Research, 18(4), 889-895.

Sumon, V. (2009). Mum (Beef): Process of meat product. Kasetsart Livestock Magazine, 35 (139), 69-70.

Tang, W., Xing, Z., Li, C., Wang, J., & Wang, Y. (2017). Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry, 221, 1642-1649.

Tripathi, N., & Sapra, A. (2020). Gram staining. StatPearls Publishing. van Niel, E. W., Hofvendahl, K., & Hahn-Hägerdal, B. (2002). Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Applied and Environmental Microbiology, 68(9), 4350-4356.

Vivek, K., Mishra, S., & Pradhan, R. C. (2020). Characterization of spray dried probiotic Sohiong fruit powder with Lactobacillus plantarum. LWT, 117, 108699.

Voraputhapor, W. (2004). Process of vegetables and fruits products. J. Office of Academic Service, Khon Kaen University, 12 (2).

Woo, J. Y., W. Gu, K. A. Kim, S. E. Jang, M. J. Han, & D. H. Kim. (2014). Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe, 27, 22-26.

Wu, C., Li, T., Qi, J., Jiang, T., Xu, H., & Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT, 122, 109064.

Wu, Y. Y., Liu, F. J., Li, L. H., Yang, X. Q., Deng, J. C., & Chen, S. J. (2012). Isolation and identification of nitrite-degrading lactic acid bacteria from salted fish. Advanced Materials Research, 393, 828-834.

Xiao, M., Huang, T., Huang, C., Hardie, J., Peng, Z., Xie, M., & Xiong, T. (2020). The microbial communities and flavour compounds of Jiangxi yancai, Sichuan paocai and Dongbei suancai: Three major types of traditional Chinese fermented vegetables. LWT, 121, 108865.

Yi, Z. J., Fu, Y. R., Li, F. M., Gao, K. S., & Zhang, X. G. (2009). Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Experimental Gerontology, 44(12),760-765.

Yu, X., Li, S., Yang, D., Qiu, L., Wu, Y., Wang, D., & Wei, H. (2016). A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d-galactose-induced aging mice. Journal of Dairy Science, 99(2), 903-914.

Yun, B., Ryu, S., Kang, M., Lee, J., Yoo, J., Kim, Y., & Oh, S. (2022). Probiotic Lacticaseibacillus rhamnosus GG increased longevity and resistance against foodborne pathogens in Caenorhabditis elegans by regulating microRNA miR-34. Frontiers in Cellular and Infection Microbiology, 11, 1404.

Zhao, J., Tian, F., Zhao, N., Zhai, Q., Zhang, H., & Chen, W. (2017). Effects of probiotics on d-galactoseinduced oxidative stress in plasma: A meta-analysis of animal models. Journal of Functional Foods, 39, 44-49.

Zhang, D. I., Li, C., Shi, R., Zhao, F., & Yang, Z. (2020). JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity. Polish Journal of Microbiology, 69(2), 205-215.

Zhu, W., Lyu, F., Naumovski, N., Ajlouni, S., & Ranadheera, C. S. (2020). Functional efficacy of probiotic Lactobacillus sanfranciscensis in apple, orange and tomato juices with special reference to storage stability and in vitro gastrointestinal survival. Beverages, 6(1), 13.

Downloads

Published

09-06-2023