Effect of grape seed extract as potent antioxidant on swelling properties and antioxidant activity of biocompatible carrageenan-based hydrogels
Main Article Content
Abstract
Grape seed extract has attracted a lot of interest as an effective natural antioxidant. It is extensively studied as it is rich in flavonoids, phenolic compounds, unsaturated fatty acids and vitamins showing particular promise in anti-inflammatory, anti-microbial, and anti-oxidative properties. We aim to highlight the effect of grape seed extract on the physicochemical properties and biological functions as antioxidant of an edible and biocompatible carrageenan-based hydrogels. The carrageenan-based hydrogels containing grape seed extract were prepared at various concentrations of grape seed extract (0-2% w/v) and two concentrations of glycerol (6% and 12% v/v). The k-carrageenan polysaccharide can be extracted from red edible seaweeds which has an ability to form gel with potential utilization in wound-healing products. The physical properties of carrageenan-based hydrogels were analyzed i.e. color, moisture content, swelling properties. In addition, the antioxidant properties of carrageenan-based hydrogels were studied as total phenolic content and % scavenging activity. Among 6 formulae, the results reported their percentages of opacity, moisture contents and swelling properties were 99-100%, 9-12%, and 14-29%, respectively. For antioxidant activities, the highest total phenolic content at 21.8 mg gallic acid equivalents per mL and scavenging activity (%) at 87.8% with 2% grape seed extract. The findings suggest that grape seed extract holds promise as an active ingredient in carrageenan hydrogel formulation, offering potential benefits for pharmaceutical purposes.
Article Details
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
References
Adjimani, J. P., & Asare, P. (2015). Antioxidant and free radical scavenging activity of iron chelators. Toxicology Reports, 2, 721-728. https://doi. org/10.1016/j.toxrep.2015.04.005
Ajit, A., Vishnu, A. G., & Varkey, P. (2021). Incorporation of grape seed extract towards wound care product development. 3 Biotech, 11(6), 261. https://doi.org/10.100 7%2Fs13205-021-02826-4
Aksoy, L., Kolay, E., Ağılönü, Y., Aslan, Z., & Kargıoğlu, M. (2013). Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi Journal of Biological Sciences, 20(3), 235-239. https://doi.org/10.1016/j. sjbs.2013.02.003
Anseth, K. S., Bowman, C. N., & BrannonPeppas, L. (1996). Mechanical properties of hydrogels and their experimental determination. Biomaterials, 17(17), 1647-1657. https://doi.org/10.1016/0142- 9612(96)87644-7
Beltran, S., Baker, J. P., Hooper, H. H., Blanch, H. W., & Prausnitz, J. M. (1991). Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels. Macromolecules, 24(2), 549-551. https://doi.org/10.1021/ ma00002a032
Bhattacharyya, T., Palla, C. S., Dethe, D. H., & Joshi, Y. M. (2024). Rheological investigation of the network structure in mixed gels of Kappa and Iota Carrageenan. Food Hydrocolloids, 146, 109298. https://doi.org/10.1016/j.foodhyd. 2023.109298
Bialik-Wąs, K., Pluta, K., Malina, D., Barczewski, M., Malarz, K., & Mrozek-Wilczkiewicz, A. (2021). The effect of glycerin content in sodium alginate/poly (vinyl alcohol)-based hydrogels for wound dressing application. International Journal of Molecular Sciences, 22(21), 12022.
Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H., & Bucio, E. (2021). Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels, 7(4), 182. https:// www.mdpi.com/2310-2861/7/4/182
Byrne, M. E., Park, K., & Peppas, N. A. (2002). Molecular imprinting within hydrogels. Advanced Drug Delivery Reviews, 54(1), 149-161. https://doi.org/10.1016/S0169- 409X(01)00246-0
Byrne, M. E., & Salian, V. (2008). Molecular imprinting within hydrogels II: Progress and analysis of the field. International Journal of Pharmaceutics, 364(2), 188-212.
Campo, V. L., Kawano, D. F., da Silva Jr, D. B., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Carbohydrate Polymers, 77(2), 167-180. https://doi.org/10.1016/j. ijpharm.2008.09.002
Coupland, J. N., Shaw, N. B., Monahan, F. J., O’Riordan, E. D., & O’Sullivan, M. (2000). Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. Journal of Food Engineering, 43(1), 25-30. https://www. sciencedirect.com/science/article/ abs/pii/S0260877499001296
Chen, B., Ivanov, I., Klein, M. L., & Parrinello, M. (2003). Hydrogen bonding in water. Physical Review Letters, 91(21), 215503. https://doi. org/10.1103/PhysRevLett.91.215503
Dalei, G., Jena, M., Jena, D., Pattanaik, C., Das, B. R., & Das, S. (2024). Fabrication of cucumber peel extract-imbued dragon fruit peel pectin hydrogel packaging films: Assessment in preservation of chicken meat. Polymer Engineering & Science, 64(3), 1391-1403 https:// doi.org/10.1002/pen.26624
De Carvalho, R. A., & Grosso, C. R. F. (2006). Properties of chemically modified gelatin films. Brazilian Journal of Chemical Engineering, 23, 45-53. doi: 10.1590/S0104- 66322006000100006
De Oliveira, J. P., Bruni, G. P., Lima, K. O., El Halal, S. L. M., da Rosa, G. S., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160.
Deng, Z., Zhu, J., Chen, Y., Zhong, N., Huang, C., & Hu, Y. (2024). Controlled release of dual food functional ingredients from octenyl succinic anhydride/β-cyclodextrin nanoparticles integrated carrageenan/ polyvinyl alcohol hydrogels. Journal of Molecular Liquids, 393, 123646. https://doi.org/10.1016/j. molliq.2023.123646
Diah, A. W. M., Raihan, M. F., Rahmawati, S., Ningsih, P., & Nuryanti, S. (2022). The antioxidant activities of acid hydrolysis of κ-Carrageenan. Rasayan Journal of Chemistry, 15(1). doi: 10.31788/RJC.2022.1516556
Ding, B., Zeng, P., Huang, Z., Dai, L., Lan, T., Xu, H., & Liu, B. (2022). A 2D material-based transparent hydrogel with engineerable interference colours. Nature Communications, 13(1), 1212. https://doi.org/10.1038/s41467- 021-26587-z
Faki, R., Gursoy, O., & Yilmaz, Y. (2019). Effect of electrospinning process on total antioxidant activity of electrospun nanofibers containing grape seed extract. Open Chemistry, 17(1), 912-918. doi:10.1515/ chem-2019-0098
Fluhr, J. W., Darlenski, R., & Surber, C. J. B. J. (2008). Glycerol and the skin: holistic approach to its origin and functions. British Journal of Dermatology, 159(1), 23-34. https://doi.org/10.1111/j.1365- 2133.2008.08643.x
Freitas, V. A. P. D., & Glories, Y. (1999). Concentration and compositional changes of procyanidins in grape seeds and skin of white Vitis vinifera varieties. Journal of the Science of Food and Agriculture, 79(12), 1601-1606. https:// doi.org/10.1002/(SICI)1097- 0010(199909)79:12<1601:: AID-JSFA407>3.0.CO;2-1
Garcia, C. F., Martins, V. C., & Plepis, A. M. (2019). Effects of grape seed extract on properties of type I collagen scaffolds. International Journal of Advances in Medical Biotechnology-IJAMB, 2(2), 2-10. https://doi.org/10.25061/2595-3931/ IJAMB/2019.v2i2.29
Garcia, V. S., Gugliotta, L. M., Gutierrez, C. G., & Gonzalez, V. D. (2024). κ-Carrageenan Hydrogels as a Sustainable Alternative for Controlled Release of New Biodegradable Molecules with Antimicrobial Activities. Journal of Polymers and the Environment, 1-15. https://doi.org/10.1007/ s10924-024-03189-6
Gesslein, B. W. (1999). Humectants in personal care formulation: a practical guide. In Conditioning agents for hair and skin (pp. 95-96). Marcel Dekker.
Gong, J. P., Katsuyama, Y., Kurokawa, T., & Osada, Y. (2003). Double-network hydrogels with extremely high mechanical strength. Advanced Materials, 15(14), 1155-1158. https:// doi.org/10.1002/adma.200304907
Gupta, M., Dey, S., Marbaniang, D., Pal, P., Ray, S., & Mazumder, B. (2020). Grape seed extract: Having a potential health benefits. Journal of Food Science and Technology, 57, 1205-1215. https://doi.org/10.1007/ s13197-019-04113-w
Jakubczyk, E., Kamińska-Dwórznicka, A., Ostrowska-Ligęza, E. (2022). The effect of composition, pre-treatment on the mechanical and acoustic properties of apple gels and freeze-dried materials. Gels, 8, 110. https://doi.org/10.3390/ gels8020110
Jangdey, R., Singh, M. R., & Singh, D. (2024). Natural hydrogels: synthesis, composites, and prospects in wound management. In hydrogels for tissue engineering and regenerative medicine (pp. 29-63). Academic Press. https://doi.org/10.1016/ B978-0-12-823948-3.00011-7
Jayakody, M. M., Kaushani, K. G., Vanniarachchy, M. P. G., & Wijesekara, I. (2023). Hydrocolloid and water soluble polymers used in the food industry and their functional properties: a review. Polymer Bulletin, 80(4), 3585- 3610. https://link.springer.com/ article/10.1007/s00289-022-04264-5
Jin, S., Newton, M. A. A., Cheng, H., Zhang, Q., Gao, W., Zheng, Y. & Zhu, J. (2023). Progress of hydrogel dressings with wound monitoring and treatment functions. Gels, 9(9), 694. https://doi.org/10.3390/ gels9090694
Kakkar, V., & Narula, P. (2022). Role of molecularly imprinted hydrogels in drug delivery-A current perspective. International Journal of Pharmaceutics, 121883. https://doi. org/10.1016/j.ijpharm.2022.121883
Kamath, K. R., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11(1-2), 59-84. https://doi. org/10.1016/0169-409X(93)90027-2
Koneru, A., Dharmalingam, K., & Anandalakshmi, R. (2020). Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications. International Journal of Biological Macromolecules, 148, 833-842. https://doi.org/10.1016/j.ijbiomac. 2020.01.018
Kopač, T., Abrami, M., Grassi, M., Ručigaj, A., & Krajnc, M. (2022). Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohydrate Polymers, 277, 118895. https://doi.org/10.1016/j. carbpol.2021.118895
Kozlowska, J., Pauter, K., & Sionkowska, A. (2018). Carrageenan-based hydrogels: Effect of sorbitol and glycerin on the stability, swelling and mechanical properties. Polymer Testing, 67, 7-11. https:// doi.org/10.1016/j.polymertesting. 2018.02.016
Kwatra, B. (2020). A review on potential properties and therapeutic applications of grape seed extract. World Journal of Pharmaceutical Research, 9, 2519-2540. doi: 10.20959/wjpr20205-17514
Lawag, I. L., Nolden, E. S., Schaper, A. A., Lim, L. Y., & Locher, C. (2023). A modified folin-ciocalteu assay for the determination of total phenolics content in honey. Applied Sciences, 13(4), 2135. https://doi. org/10.3390/app13042135
Li, X., & Su, X. (2018). Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. Journal of Materials Chemistry B, 6(29), 4714-4730. https://doi. org/10.1039/C8TB01078A
Locilento, D. A., Mercante, L. A., Andre, R. S., Mattoso, L. H., Luna, G. L., Brassolatti, P. & Correa, D. S. (2019). Biocompatible and biodegradable electrospun nanofibrous membranes loaded with grape seed extract for wound dressing application. Journal of Nanomaterials, 2019. https:// doi.org/10.1155/2019/2472964
Ma, H., Zhou, Q., Chang, J., & Wu, C. (2019). Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano, 13(4), 4302-4311. https:// doi.org/10.1021/acsnano.8b09496
Ma, Z. F., & Zhang, H. (2017). Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants, 6(3), 71. ttps://doi.org/10.3390/ antiox6030071
Mahinroosta, M., Farsangi, Z. J., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55. https://doi. org/10.1016/j.mtchem.2018.02.004
Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S. & Reis, R. L. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 4(17), 999-1030. https://doi.org/10.1098/ rsif.2007.0220
Memar, M. Y., Adibkia, K., Farajnia, S., Kafil, H. S., Yekani, M., Alizadeh, N., & Ghotaslou, R. (2019). The grape seed extract: A natural antimicrobial agent against different pathogens. Reviews and Research in Medical Microbiology, 30(3), 173-182. doi: 10.1097/MRM.0000000000000174
Mokhtari, H., Tavakoli, S., Safarpour, F., Kharaziha, M., Bakhsheshi-Rad, H. R., Ramakrishna, S., & Berto, F. (2021). Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers, 13(11), 1744. doi: 10.3390/polym13111744
Merck Index, O’neil, M. J., Heckelman, P., & Koch, C. (2006). The Merck index. Whitehouse Station Merck & Co.
Nakipoglu, M., Özkabadayı, Y., Karahan, S., & Tezcaner, A. (2024). Bilayer wound dressing composed of asymmetric polycaprolactone membrane and chitosan-carrageenan hydrogel incorporating storax balsam. International Journal of Biological Macromolecules, 254, 128020. https://doi.org/10.1016/j. ijbiomac.2023.128020
Nallathambi, R., Poulev, A., Zuk, J. B., & Raskin, I. (2020). Proanthocyanidin-rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 colon cells. Nutrients, 12(6), 1623. https://doi.org/10.3390/nu12061623
Pleuvry, B. J. (2008). Drugs acting by causing physicochemical changes in the environment. Anaesthesia & Intensive Care Medicine, 9(4), 163-164. https://doi.org/10.1016/j. mpaic.2008.02.003
Premjit, Y., Pandey, S., & Mitra, J. (2024). Encapsulation of probiotics in freeze-dried calcium alginate and κ-carrageenan beads using definitive screening design: A comprehensive characterisation and in vitro digestion study. International Journal of Biological Macromolecules, 129279. https://doi.org/10.1016/j. ijbiomac.2024.129279
Qureshi, M. A. U. R., Arshad, N., Rasool, A., Islam, A., Rizwan, M., Haseeb, M., & Bilal, M. (2024). Chitosan and carrageenan-based biocompatible hydrogel platforms for cosmeceutical, drug delivery, and biomedical applications. Starch-Stärke, 76 (1-2), 2200052.
Rajakumari, R., Volova, T., Oluwafemi, O. S., Rajesh Kumar, S., Thomas, S., & Kalarikkal, N. (2020). Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Development and Industrial Pharmacy, 46(8), 1219-1229. https://doi.org/10.1080/0363904 5.2020.1788059
Ribeiro, A., Estanqueiro, M., Oliveira, M., & Sousa Lobo, J. (2015). Main benefits and applicability of plant extracts in skin care products. Cosmetics, 2(2), 48-65. https://doi. org/10.3390/cosmetics2020048
Rode, M. P., Batti Angulski, A. B., Gomes, F. A., da Silva, M. M., Jeremias, T. D. S., de Carvalho, R. G., & Calloni, G. W. (2018). Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. Journal of Biomaterials Applications, 33(3), 422-434. https:// doi.org/10.1177/0885328218795569
Samiei, M., Fathi, M., Barar, J., Fathi, N., Amiryaghoubi, N., & Omidi, Y. (2021). Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology, 64, 102600. https://doi.org/10.1016/j. jddst.2021.102600
Shafie, M. H., Kamal, M. L., Zulkiflee, F. F., Hasan, S., Uyup, N. H., Abdullah, S. & Zafarina, Z. (2022). Application of carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. Journal of the Indian Chemical Society, 99(9), 100613. https://doi. org/10.1016/j.jics.2022.100613
Watcharin, W., Gupta, S., Saning, A., Laodheerasiri, S., & Chuenchom, L. (2023). Free radical scavenging effects of grapefruit essential oil nanoemulsion stabilized with carrageenan and its cytotoxicity assay on HeLa cell line. Advances in Natural Sciences: Nanoscience and Nanotechnology, 14(2), 025014. doi 10.1088/2043-6262/acd6e5
Wei, D., Zhu, X. M., Chen, Y. Y., Li, X. Y., Chen, Y. P., Liu, H. Y., & Zhang, M. (2019). Chronic wound biofilms: diagnosis and therapeutic strategies. Chinese Medical Journal, 132(22), 2737-2744. https:// mednexus.org/doi/full/10.1097/ CM9.0000000000000523
Wichterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117-118.