Fe3O4@Ag core-shell composite nanoparticle with tunable optical property

Authors

  • Thananchai Dasri Faculty of Applied Science and Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
  • Artit Chingsungnoen Technological Plasma Research Unit, Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

Keywords:

Iron oxide-silver nanoparticles, surface plasmon resonance, discrete dipole approximation

Abstract

In this work, plasmonic behaviors exhibited by nanoparticles (NP) composed of magnetite (Fe3O4 ) cores with silver (Ag) shells were investigated by discrete dipole approximation (DDA). First, the Fe3O4 core size was ixed at 32 nm and the Ag shell thickness was varied from 8 nm to 15 nm. Second, the Ag shell thickness was ixed at 16 nm and the Fe3O4 core diameters were between 5 and 20 nm. The calculated absorption peaks showed two peaks positioned to the left and right of 382 nm, which is the peak position of pure Ag. The results revealed that by varying either the Fe3O4 core size or the Ag shell thickness compared with pure Fe3O4 and Ag NP, light absorption enhancement and tunable aspects are successfully achieved. This nanomaterial is expected to be applicable in biomedicine, nanocatalysis, optic devices, and new functional devices in the future.

References

Arbab A. S., Bashaw, L. A., Miller B. R., Jordan E. K., Lewis B. K., Kalish H. and Frank J. A. 2003. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838-46.

Armelles, G., Alfonso Cebollada, A., García-Martín, A. and González, M. U. 2013. Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities. Advanced Optical Materials 1, 10-35.

Brollo, M. E. F., Lo´pez-Ruiz, R., Muraca, D., Figueroa, S. J. A., Pirota, K.R. and Knobel1, M. 2014. Compact Ag@Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction. Scientiic Reports 4, 6839.

Chaiyachate, P. and Dasri, T. 2017. Optical Absorption and Scattering Properties of the Active Layer of Perovskite Solar Cells Incorporated Silver Nanoparticles. Oriental Journal of Chemistry 33, 807-813.

Choi, C. and Alivisatos, A. P. 2010. From artiicial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annual Review of Physical Chemistry 61, 369-389.

Cunningham, J. C. H., Arai, T., Yang, P. C., McConnell, M. V., Pauly, J. M. and Conolly, S. M. 2005. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in Medicine 53, 999-1005.

Dani, R. K., Wang, H., Bossmann, S. H., Wysin, G. and Chikan, V. 2011. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory. The Journal of Chemical Physics 135, 224502.

Dasri, T. 2016. Theoretical calculation of plasmonic enhancement of silver nanosphere, nanocube, and nanorod embedded in organic solar cells. Integrated Ferroelectrics 175, 176-185.

Fontijn, W. F. J., Van der Zaag, P. j., Devillers, M. A. C., Brabers, V. A. M. and Metselaar, R. 1997. Optical and magneto-optical polar Kerr spectra of Fe3O4 and Mg2+- or Al3+-substituted Fe3O4 . Physical Review B 56, 5432-5442.

Jain, P. K., Xiao, Y., Walsworth, R. and Cohen, A. E. 2009. Surface Plasmon Resonance Enhanced MagnetoOptics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Letters 9, 1644-1650.

Jiang, W., Zhou, Y., Xuan, S. and Gong, X. 2012. Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts. Dalton Transactions 41, 4594- 4601.

Johnson, P. B. and Christy, R. W. 1972. Optical Constants of the Noble Metals. Physical Review B 6, 4370- 4379.

Kim, J., Lee, J. E., Lee, S. H., Yu, J. H., Lee, J. H., Park, T. G. and Hyeon, T. 2008. Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer- Targeted Imaging and Magnetically Guided Drug Delivery. Advanced Materials 20, 478-483.

Lim, J., Eggeman, A., Lanni, F., Tilton, R. D. and Majetich, S. A. 2008. Synthesis and Single-Particle Optical Detection of Low-Polydispersity Plasmonic-Superparamagnetic Nanoparticles. Advanced Materials 20,1721-1726.

Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. 2011. Advanced Drug Delivery Reviews 63, 24-46.

Purcell, E. M. and Pennypacker, C. R. 1973. Scattering and Absorption of Light by Nonspherical Dielectric Grains. The Astrophysical Journal 186, 705.

Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S. S. and Zhi-Chuan, X. 2014. Mag - netic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B 23, 3, 037503.

Sompech, S., Thaomola, S. and Dasri, T. 2016. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles. Oriental Journal of Chemistry 32, 85-91.

Sun. Y., Tian, Y., He, M., Zhao, Q., Chen, C., Hu, C. and Liu. Y. 2012. Controlled Synthesis of Fe 3 O 4 /Ag Core–Shell Composite Nanoparticles with High Electrical Conductivity. Journal of Electronic Mate - rials 41, 519-523.

Prodan, E. and Nordlander, P. 2003. Structural Tunability of the Plasmon Resonances in Metallic Nanoshells. Nano Letters 3, 543-547.

Prodan, E. and Nordlander, P. 2004. Plasmon hybridization in spherical nanoparticles. The Journal of Chemical Physics 120, 5444-5454.

Yang, D., Pang, X., He, Y., Wang, Y., Chen, G., Wang, W. and Lin, Z. 2015. Precisely Size-Tunable Magnetic/ Plasmonic Core/Shell Nanoparticles with Controlled Optical Properties. Angewandte Chemie Interna - tional Edition 127, 12259-12264.

Downloads

Published

30-06-2018