Evaluation and stability analysis of recently released mesoamerican red-colored common bean (Phaseolus vulgaris L.) varieties in the Southern Ethiopia region
Keywords:
Common bean, evaluate, select, stable, varietiesAbstract
The small red Phaseolus vulgaris L. varieties were tested at three sites from 2022 to 2023 (six environments, E1 to E6) to evaluate and select superior and stable varieties. A randomized complete block design was used to evaluate six varieties with four replications. The varieties were planted in six rows per plot; the space between rows, plants, plots, and reps were 0.4 m, 0.1 m, 0.8 m, and 1 m, respectively. ANOVA showed significant differences (P < 0.01) for seed yield (kg ha⁻¹), days to 50% flowering, days to 90% maturity, plant height (cm), seed per pod, and pod per plant both at individual environments and in the combined analysis. The GEI (Genotype by Environment Interaction) was significant (P < 0.01) for the measured traits. The mean seed yield in the three sites was 2,397.5 kg ha⁻¹. The superior varieties were SER 119 and SER 125 with a mean seed yield of 2,846 and 2,639 kg ha⁻¹ respectively; however, the most stable genotype identified by AMMI and GGE bi-plots was SER 125. The AMMI ANOVA showed that environments, genotypes, and their interaction were significant; and their magnitude was 31.85%, 14.75%, and 27.75% respectively of the total variation. Besides, the study identified discriminating (Bolosso Bombe and Areka) and undiscriminating (Gofa) environments. Hence, this study recommended that SER 125 and SER 119 common bean varieties could be produced in the tested locations and areas with similar agro-ecological zones.
References
Balcha, A., & Tigabu, R. (2015). Participatory varietal selection of common bean (Phaseolus vulgaris L.) in Wolaita, Ethiopia. Asian Journal of Crop Science, 7(4), 295–300. https://doi.org/10.3923/ajcs.2015.295.300
Bartlet, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 160(901), 268–282. https://doi.org/10.1098/rspa.1937.0109
Beebe, S., Skroch, P. W., Tohme, J., Duque, M. C., Pedraza, F., & Nienhuis, J. (2000). Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Science, 40(1), 264–273. https://doi.org/10.2135/cropsci2000.401264x
Besaye, B. H., & Galgaye, G. G. (2022). Impact of common bean (Phaseolus vulgaris L.) genotypes on seed yield and seed quality at different locations of Eastern Ethiopia. Cogent Food & Agriculture, 8(1), 2115674. https://doi.org/10.1080/23311932.2022.2115674
Courtois, B., Bartholome, B., Chaudhary, D., McLaren, G., & Misra, C. H. (2001). Comparing farmers’ and breeders’ rankings in varietal selection for low-input environments: A case study of rainfed rice in eastern India. Euphytica, 122(3), 537–550. https://doi.org/10.1023/A:1017994906544
Central Statistical Agency (CSA). (2022). Agricultural sample survey: Report on area and production of major crops (private peasant holdings, Meher season), 2021/2022. Retrieved from www.statsethiopia.gov.et
Debouck, D.G., Toro, O., Paredes, O.M., Johnson, W.C., & Gepts, P. (1993). Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Economic Botany, 47(4), 408–423. https://doi.org/10.1007/BF02907356
Belayneh, D. B. (2019). Genotype by environment interaction and stability of seed yield of Andean red common bean (Phaseolus vulgaris L.) genotypes in Southern and Central Rif Valley of Ethiopia (Master’s thesis). Hawassa University. Retrieved from http://etd.hu.edu.et
Bellucci, E., Bitocchi, E., Rau, D., Rodriguez, M., Biageti, E., Giardini, A., Atene, G., Nanni, L., & Papa, R. (2014). Genomics of origin, domestication and evolution of Phaseolus vulgaris. In R. Tuberosa, A. Graner, & E. Frison (Eds.), Genomics of plant genetic resources (pp. 483–507). Springer. https://doi.org/10.1007/978-94-007-7572-5_20
Ethiopian Agriculture Authority (EAA). (2021). Plant variety release, protection, and seed quality control directorate: Crop variety register (Issue No. 24). Ethiopian Agriculture Authority.
Evans, A. M. (1980). Structure, variation, evolution, and classification in Phaseolus. In R. J. Summerfeld & A. H. Bunting (Eds.), Advances in legume science (pp. 337–347). Royal Botanic Gardens, Kew.
FAO. (2022). Crop production and trade data. Food and Agriculture Organization. Retrieved from http://www.fao.org/faostat/en/#data
Gauch, H.G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705–715. https://doi.org/10.2307/2531585
Gauch, H.G., & Zobel, R.W. (1988). Predictive and postdictive success of statistical analyses of yield trials. Theoretical and Applied Genetics, 76(1), 1–10. https://doi.org/10.1007/BF00288824
GenStat. (2014). Procedure library release (17th ed.). VSN International Ltd. Registered to Plant Research International. Madhya Pradesh, India.
Gepts, P., Aragão, F.J., Barros, E.-D., Blair, M.W., Brondani, R., Broughton, W., Galasso, I., Hernández, G., Kami, J., Lariguet, P., & McClean, P. (2008). Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In P.H. Moore & R. Ming (Eds.), Genomics of tropical crop plants (pp. 113–143). Springer.
Ejigu, G. K., Mohammed, H., & Fenta, B. A. (2022). Yield stability analysis of large-seeded common bean varieties in major bean growing areas of Ethiopia. Ethiopian Journal of Crop Science, 9(2). Retrieved from https://www.researchgate.net/publication/364304618
Loha, G., Silas, M., & Gidabo, G. (2023). Effect of common bean (Phaseolus vulgaris L.) varieties and variable rates of potassium fertilizer on yield and yield-related traits at Areka, Southern Ethiopia. Applied and Environmental Soil Science, 2023, 5996945. https://doi.org/10.1155/2023/5996945
Harvest Plus. (2009). Iron-bean. Retrieved from http://www.harvestplus.org/sites/default/files/
International Board for Plant Genetic Resources (IBPGR). (1983). Descriptors for Phaseolus coccineus. IBPGR Secretariat.
Institute of Science and Agricultural Research (ISAR). (2011). Bean program, Rwanda Agricultural Research Institute. Retrieved from http://www.isar.rw/spip.php
Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., & Blair, M. W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The Crop Journal, 4(4), 367–376. https://doi.org/10.1016/j.cj.2016.06.007
Machiani, M. A., Rezaei-Chiyaneh, E., Javanmard, A., Maggi, F., & Morshedloo, M. R. (2019). 1 Evaluation of common bean (Phaseolus vulgaris L.) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. Journal of Cleaner Production, 235, 112–122. https://doi.org/10.1016/j.jclepro.2019.06.241
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S., & Bales, S. (2022). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security. Legume Science, 5, e155. https://doi.org/10.1002/leg3.155
Yirga, M., Sileshi, Y., Atero, B., Amsalu, B., Moges, A., Tumssa, K., Yimer, Z., & Geneti, D. (2022). Performance of introduced climbing bean (Phaseolus vulgaris L.) varieties for registration in Ethiopia. Ethiopian Journal of Crop Science, 10(1), 41–51. https://doi.org/10.4314/ejcs.v10i1.5
Pachico, D. (1989). Trends in world common bean production. In H. F. Schwartz & M. A. Pastor-Corrales (Eds.), Bean production problems in the tropics (pp. 1–8). CIAT.
Buruchara, R., Chirwa, R., Sperling, L., Mukankusi, C., Rubyogo, J. C., Muthoni, R., & Abang, M. M. (2011). Development and delivery of bean varieties in Africa: The Pan-Africa Bean Research Alliance (PABRA) model. African Crop Science Journal, 19(4), 227–245. https://doi.org/10.4314/acsj.v19i4.1
Salcedo, J. M. (2008). Regeneration guidelines: Common bean. In M. E. Dulloo, I. Thormann, M. A. Jorge, & J. Hanson (Eds.), Crop specific regeneration guidelines [CD-ROM]. CGIAR System-wide Genetic Resource Programme. www.genebanks.org
Singh, S. P., Gutierrez, J. A., Molina, A., Urrea, C., & Gepts, P. (1991). Genetic diversity in cultivated common bean: Marker-based analysis of morphological and agronomic traits. Crop Science, 31(1), 23–29. https://doi.org/10.2135/cropsci1991.0011183X003100010005x
Mekonnen, T. W., Mekbib, F., Amsalu, B., Gedil, M., & Labuschagne, M. (2022). Genotype by environment interaction and grain yield stability of drought-tolerant cowpea landraces in Ethiopia. Euphytica, 57, 218. https://doi.org/10.1007/s10681-022-03011-1
Witcombe, J. R., Joshi, A., Joshi, K. D., & Sthapit, B. R. (1996). Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Experimental Agriculture, 32(4), 445–460. https://doi.org/10.1017/S0014479700020290
Goa, Y., Mohammed, H., Worku, W., & Urage, E. (2022). Genotype by environment interaction and yield stability of cowpea (Vigna unguiculata (L.) Walp.) genotypes in moisture-limited areas of Southern Ethiopia. Heliyon, 8, e09013. https://doi.org/10.1016/j.heliyon.2022.e09013
Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 643-653. https://doi.org/10.2135/cropsci2006.06.0374
Zobel, R. W., Wright, M. J., & Gauch, H. G., Jr. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388–393. https://doi.org/10.2134/agronj1988.00021962008000030002x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Food Agricultural Sciences and Technology

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.



