Genetic analysis and resistance mechanisms in Anthurium against anthracnose disease caused by Colletotrichum gloeosporioides
Keywords:
Anthracnose, Anthurium, Colletotrichum gloeosporioides, chitinase, glucanaseAbstract
The objective of this study was to explore the genetic mechanisms underlying resistance to anthracnose disease in Anthurium cultivars, caused by the fungal pathogen Colletotrichum gloeosporioides. Anthracnose poses a significant challenge to Anthurium cultivation, impacting both yield and ornamental quality. This research aimed to fill the knowledge gap in molecular mechanisms of resistance, focusing on key defense-related enzymes, chitinase and β-1,3-glucanase. The methodology involved collecting ten Anthurium cultivars and performing artificial inoculation with C. gloeosporioides. DNA extraction, polymerase chain reaction, and sequencing were used to investigate genetic traits associated with anthracnose resistance. Enzymatic assays measured chitinase and β-1,3-glucanase activities to assess physiological responses. Data analysis included genetic similarity comparisons to determine genetic closeness among cultivars. Results revealed that Plew Tien Phuket and Plew Tien Lampang showed higher resistance with increased enzyme activity, displaying fewer lesions compared to susceptible cultivars like Merengue. Chitinase and β-1,3-glucanase activities significantly increased in inoculated plants, indicating a robust defense response. Genetic analysis showed significant diversity, with high similarity coefficients between resistant cultivars, highlighting genetic factors contributing to anthracnose resistance. In conclusion, elevated activities of chitinase and β-1,3-glucanase were associated with enhanced resistance to anthracnose, suggesting these enzymes as potential markers for breeding programs. These findings provide valuable insights into the molecular basis of anthracnose resistance, offering a foundation for sustainable disease management in Anthurium cultivation
References
Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.
Alkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal virulence factors and key host defense mechanisms. New Phytologist, 208(4), 1267–1283. https://doi.org/10.1111/nph.13544
Balasubramanian, V., Vashisht, D., Cletus, J., & Sakthivel, N. (2012). Plant β-1,3-glucanases: Their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology Letters, 34(11), 1983–1990. https://doi.org/10.1007/s10529-012-1012-6
Bhadauria, V., Vijayan, P., Wei, Y., & Banniza, S. (2017). Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Scientific Reports, 7, Article 42338. https://doi.org/10.1038/srep42338
Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181–213. https://doi.org/10.3114/sim0014
Chanaeng, K., Chookanhom, C., Sarasan, T., Sootsuwan, K., Chomnawang, P., & Srisamoot, N. (2017). Analysis of genetic relationship of bananas using DNA sequences of maturase K gene. In Proceedings of the 7th International Conference on Fermentation Technology for Value Added Agricultural Products & the 12th Asian Biohydrogen & Biorefinery Symposium (pp. 28–37). Khon Kaen University.
Cletus, J., Balasubramanian, V., Vashisht, D., & Sakthivel, N. (2013). Transgenic expression of plant chitinases to enhance disease resistance. Biotechnology Letters, 35(11), 1719–1732. https://doi.org/10.1007/s10529-013-1269-4
Darras, A. I. (2020). Implementation of sustainable practices to ornamental plant cultivation worldwide: A critical review. Agronomy, 10(10), 1570. https://doi.org/10.3390/agronomy10101570
Daughtrey, M., & Buitenhuis, R. (2020). Integrated pest and disease management in greenhouse ornamentals. In M. L. Gullino, R. Albajes, & P. C. Nicot (Eds.), Integrated pest and disease management in greenhouse crops (pp. 625–679). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-22304-5_22
De Mori, G., & Cipriani, G. (2023). Marker-assisted selection in breeding for fruit trait improvement: A review. International Journal of Molecular Sciences, 24(10), 8984. https://doi.org/10.3390/ijms24108984
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Dehgahi, R., Subramaniam, S., Zakaria, L., Joniyas, A., Firouzjahi, F. B., Haghnama, K., & Razinataj, M. (2015). Review of research on fungal pathogen attack and plant defense mechanism against pathogen. International Journal of Scientific Research in Agricultural Sciences, 2(8), 197–208. https://doi.org/10.12983/ijsras-2015-p0197-0208
Devrani, N., Kakkar, P., Sahu, A., & Tiwari, C. (2023). Global trends in floriculture. In A. Burud, S. M. Kolur, K. D. R., D. Yadav, & N. Kaushal (Eds.), Floriculture and Landscaping Chronicles: A Collaborative Insights (pp. 190–221). Stella International Publication.
Faust, J. E., & Dole, J. M. (2021). The global cut flower and foliage marketplace. In Cut flowers and foliages (pp. 1–47). CABI. https://doi.org/10.1079/9781789247602.0001
Fernandez-Gutierrez, A., & Gutierrez-Gonzalez, J. J. (2021). Bioinformatic-based approaches for disease-resistance gene discovery in plants. Agronomy, 11(11), 2259. https://doi.org/10.3390/agronomy11112259
Figueiredo, J., Sousa Silva, M., & Figueiredo, A. (2018). Subtilisin-like proteases in plant defence: The past, the present and beyond. Molecular Plant Pathology, 19(4), 1017–1028. https://doi.org/10.1111/mpp.12567
Filyushin, M. A., Shagdarova, B. Ts., Il’ina, A. V., Kochieva, E. Z., Shchennikova, A. V., & Varlamov, V. P. (2023). Cultivar-specific effect of chitosan on chitinase and glucanase activity in the roots of garlic Allium sativum L. Russian Journal of Plant Physiology, 70(1), 45–57. https://doi.org/10.31857/S0015330322050050
Fu, M., Crous, P. W., Bai, Q., Zhang, P. F., Xiang, J., Guo, Y. S., Zhao, F. F., Yang, M. M., Hong, N., & Xu, W. X. (2019). Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia—Molecular Phylogeny and Evolution of Fungi, 42, 1–35. https://doi.org/10.3767/persoonia.2019.42.01
Garafutdinov, R. R., Sakhabutdinova, A. R., Kupryushkin, M. S., & Pyshnyi, D. V. (2020). Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo-DNA polymerase. Biochimie, 168, 259–267. https://doi.org/10.1016/j.biochi.2019.11.013
Grover, A. (2012). Plant chitinases: Genetic diversity and physiological roles. Critical Reviews in Plant Sciences, 31(1), 57–73. https://doi.org/10.1080/07352689.2011.616043
Guimarães, E. P. (Ed.). (2007). Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations. https://doi.org/10.1017/S1014233900002406
Khan, M., Seto, D., Subramaniam, R., & Desveaux, D. (2018). Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. The Plant Journal, 93(4), 651–663. https://doi.org/10.1111/tpj.13780
Lorenz, T. C. (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments, 63, e3998. https://doi.org/10.3791/3998
McDowell, D. G., Burns, N. A., & Parkes, H. C. (1998). Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Research, 26(14), 3340–3347. https://doi.org/10.1093/nar/26.14.3340
Photita, W., Taylor, P. W. J., Ford, R., Hyde, K. D., & Lumyong, S. (2005). Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Diversity, 18, 117–133.
Pizano, M. (2005). International market trends—Tropical flowers. In A. F. C. Tombolato (Ed.), Proceedings of the Vth International Symposium on New Floricultural Crops (Acta Horticulturae No. 683, pp. 79–86). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2005.683.6
Pusztahelyi, T., Holb, I. J., & Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 6, 573. https://doi.org/10.3389/fpls.2015.00573
Rex, B., Sheela, J., Theradimani, M., Ebenezar, E. G., Vanniarajan, C., & Swaminathan, V. (2019). Survey, isolation and morphological variation of different isolates of anthurium anthracnose disease incited by Colletotrichum gloeosporioides. Journal of Pharmacognosy and Phytochemistry, 8(5), 355–357.
Ross, L. N., & Woodward, J. F. (2016). Koch’s postulates: An interventionist perspective. Studies in History and Philosophy of Biological and Biomedical Sciences, 59, 35–46. https://doi.org/10.1016/j.shpsc.2016.06.001
Sakhabutdinova, A. R., Mirsaeva, L. R., Oscorbin, I. P., Filipenko, M. L., & Garafutdinov, R. R. (2020). Elimination of DNA multimerization arising from isothermal amplification in the presence of Bst exo–DNA polymerase. Russian Journal of Bioorganic Chemistry, 46(1), 52–59. https://doi.org/10.1134/S1068162020010082
Sakinah, M. I., Suzianti, I. V., & Latiffah, Z. (2014). Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp.) in Malaysia. Genetics and Molecular Research, 13(2), 3627–3637.
Sels, J., Mathys, J., De Coninck, B. M. A., Cammue, B. P. A., & De Bolle, M. F. C. (2008). Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, 46(11), 941–950. https://doi.org/10.1016/j.plaphy.2008.06.011
Simko, I., Jia, M., Venkatesh, J., Kang, B.-C., Weng, Y., Barcaccia, G., Lanteri, S., Bhattarai, G., & Foolad, M. R. (2021). Genomics and marker-assisted improvement of vegetable crops. Critical Reviews in Plant Sciences, 40(4), 303–365. https://doi.org/10.1080/07352689.2021.1941605
Sipos, R., Székely, A. J., Palatinszky, M., Révész, S., Márialigeti, K., & Nikolausz, M. (2007). Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiology Ecology, 60(2), 341–350. https://doi.org/10.1111/j.1574-6941.2007.00283.x
Šmarda, P., Bureš, P., Horová, L., Leitch, I. J., Mucina, L., Pacini, E., Tichý, L., Grulich, V., & Rotreklová, O. (2014). Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, 111(39), E4096–E4102. https://doi.org/10.1073/pnas.1321152111
Srisamoot, N., & Padsri, I. (2018). Assessing genetic diversity of some Anthurium andraeanum Hort. cut-flower cultivars using ISSR markers. Genomics and Genetics, 11(1 & 2), 1–8. https://doi.org/10.14456/gag.2018.1
Srisamoot, N., Srisamoot, T., & Chookanhom, C. (2020). Assessment of genetic relationships among Anthurium cultivars using nucleotide sequences of chitinase and β-1,3-glucanase genes. Journal of Roi Et Rajabhat University: Science and Technology, 1(1), 15–24.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
Teixeira da Silva, J. A., Dobránszki, J., Zeng, S., Winarto, B., Lennon, A. M., Jaufeerally-Fakim, Y., & Christopher, D. A. (2015). Genetic transformation and molecular research in Anthurium: Progress and prospects. Plant Cell, Tissue and Organ Culture (PCTOC), 123(2), 205–219. https://doi.org/10.1007/s11240-015-0832-1
Vinogradov, A. E. (2003). DNA helix: The importance of being GC-rich. Nucleic Acids Research, 31(7), 1838–1844. https://doi.org/10.1093/nar/gkg296
Wang, Y., Chen, J. Y., Xu, X., Cheng, J., Zheng, L., Huang, J., & Li, D. W. (2020). Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China. Plant Disease, 104(2), 474–482. https://doi.org/10.1094/PDIS-11-18-1955-RE
Winkelmann, T., Braun, P., Dhooghe, E., & van Huylenbroeck, J. (2020). Advances in conventional breeding techniques for ornamentals. In M. Reid (Ed.), Achieving sustainable cultivation of ornamental plants (pp. 119–148). Burleigh Dodds Science Publishing. https://doi.org/10.19103/as.2020.0066.03
Xie, S. S., & Duan, C. G. (2023). Epigenetic regulation of plant immunity: From chromatin codes to plant disease resistance. aBIOTECH, 4(2), 124–139. https://doi.org/10.1007/s42994-023-00101-z
Zheng, Y., Wang, X., Liu, S., Zhang, K., Cai, Z., Chen, X., Zhang, Y., Liu, J., & Wang, A. (2018). The endochitinase of Clonostachys rosea expression in Bacillus amyloliquefaciens enhances the Botrytis cinerea resistance of tomato. International Journal of Molecular Sciences, 19(8), 2221. https://doi.org/10.3390/ijms19082221
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Food Agricultural Sciences and Technology

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.




