Evaluating the impact of leaf trichome on whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) dynamics in cassava
Keywords:
Whitefly, cassava mosaic disease, Bemisia tabaci, trichome density, choice testAbstract
Cassava (Manihot esculenta) is a vital crop in Thailand. However, its yield is significantly impacted by Cassava Mosaic Disease (CMD), caused by the Sri Lankan Cassava Mosaic Virus (SLCMV). CMD is primarily spread by whiteflies (Bemisia tabaci), as whitefly infestations facilitate disease transmission; therefore, understanding pest resistance in cassava is crucial. Antixenosis, a form of resistance, involves plant traits such as trichome density that deter pest colonization. This study evaluated trichome density and size across six cassava cultivars—Huaybong 60, CMR 89, Kasetsart 50, Rayong 72, Rayong 4, and Pirun 2—and assessed their influence on whitefly settling preferences. Whitefly populations were monitored for four months, while trichome density and size were analyzed using scanning electron microscopy (SEM). The results indicated significant variation in whitefly infestation among the cassava cultivars. The CMR 89, Pirun 2, Rayong 4, and Kasetsart 50 cultivars experienced the highest infestation, whereas Huaybong 60 and Rayong 72 had lower infestations. Notably, the Huaybong 60 displayed the highest trichome density, followed by Rayong 72, Pirun 2, and CMR 89, while Rayong 4 and Kasetsart 50 had lower densities. A strong negative correlation was observed between trichome density and whitefly infestation, suggesting that higher trichome density effectively reduces whitefly colonization. These findings indicate that Huaybong 60 and Rayong 72 could serve as promising genetic resources for breeding cassava cultivars with enhanced non-preference resistance (antixenosis) to whiteflies. This research highlights the importance of selecting resistant cultivars to strengthen cassava production while minimizing the impact of whitefly-transmitted diseases.
References
Abubakar, M., Koul, B., Chandrashekar, K., Raut, A., & Yadav, D. (2022). Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture: A review. Agriculture, 12(9), 1317. https://doi.org/10.3390/agriculture12091317
Andrade, M. C., da Silva, A. A., Neiva, I. P., Oliveira, I. R. C., de Castro, E. M., Francis, D. M., & Maluf, W. R. (2017). Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica, 213, 52. https://doi.org/10.1007/s10681-016-1792-1
Avery, P. B., Kumar, V., Simmonds, M. S. J., & Faull, J. (2015). Influence of leaf trichome type and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Applied Entomology and Zoology, 50(1), 79–87. https://doi.org/10.1007/s13355-014-0308-5
Calatayud, P. A., Rahbé, Y., Tjallingii, W. F., Tertuliano, M., & Le Rü, B. (1994). Electrically recorded feeding behaviour of cassava mealybug on host and non-host plants. Entomologia Experimentalis et Applicata, 72(3), 219–232. https://doi.org/10.1111/j.1570-7458.1994.tb01821.x
Chikoti, P. C. (2011). Development of cassava (Manihot esculenta Crantz) cultivars for resistance to cassava mosaic disease in Zambia (Doctoral dissertation). University of KwaZulu-Natal, Pietermaritzburg, South Africa.
Chikoti, P. C., Ndunguru, J., Melis, R., & Tairo, F. (2019). Whitefly resistance in African cassava genotypes. African Crop Science Journal, 27(2), 213–228. https://doi.org/10.4314/acsj.v27i2.7
Escobar-Bravo, R., Alba, J. M., Pons, C., Granell, A., Kant, M. R., Moriones, E., & Fernández-Muñoz, R. (2016). A jasmonate-inducible defense trait transferred from wild into cultivated tomato establishes increased whitefly resistance and reduced viral disease incidence. Frontiers in Plant Science, 7, 1732. https://doi.org/10.3389/fpls.2016.01732
Fereres, A., & Moreno, A. (2009). Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research, 141(2), 158–168. https://doi.org/10.1016/j.virusres.2008.10.020
Ghaffar, A. B. M. B., Pritchard, J., & Ford-Lloyd, B. (2011). Brown planthopper (N. lugens Stal) feeding behavior on rice germplasm as an indicator of resistance. PLoS ONE, 6(7), e22137. https://doi.org/10.1371/journal.pone.0022137
Heinz, K. M., & Parrella, M. P. (1994). Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) cultivar-mediated differences in performance of five natural enemies of Bemisia argentifolii Bellows and Perring, n. sp. (Homoptera: Aleyrodidae). Biological Control, 4(4), 305–318. https://doi.org/10.1006/bcon.1994.1039
Ibanez, S., Gallet, C., & Després, L. (2012). Plant insecticidal toxins in ecological networks. Toxins, 4(4), 228–243. https://doi.org/10.3390/toxins4040228
Jindal, V., & Dhaliwal, G. S. (2011). Mechanisms of resistance in cotton to whitefly (Bemisia tabaci): Antixenosis. Phytoparasitica, 39(2), 129–136. https://doi.org/10.1007/s12600-011-0144-x
Kariyat, R. R., Raya, C. E., Chavana, J., Cantu, J., Guzman, G., & Sasidharan, L. (2019). Feeding on glandular and non-glandular leaf trichomes negatively affect growth and development in tobacco hornworm (Manduca sexta) caterpillars. Arthropod-Plant Interactions, 13(2), 321–333. https://doi.org/10.1007/s11829-019-09678-z
Kollar, A., Seemüller, E., Bonnet, F., Saillard, C., & Bové, J. M. (1990). Isolation of the DNA of various plant-pathogenic mycoplasma-like organisms from infected plants. Phytopathology, 80(3), 233–237. https://doi.org/10.1094/Phyto-80-233
Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599. https://doi.org/10.1007/s11103-004-1651-7
Legg, J. P., Jeremiah, S. C., Obiero, H. M., Maruthi, M. N., Ndyetabula, I., Okao-Okuja, G., Bouwmeester, H., Bigirimana, S., Tata-Hangy, W., Gashaka, G., Mkamilo, G., Alicai, T., & Lava Kumar, P. (2011). Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159(2), 161–171. https://doi.org/10.1016/j.virusres.2011.04.018
Legg, J. P., Lava Kumar, P., Makeshkumar, T., Tripathi, L., Ferguson, M., Kanju, E., Ntawuruhunga, P., & Cuellar, W. (2015). Cassava virus diseases: Biology, epidemiology, and management. Advances in Virus Research, 91, 85–142. https://doi.org/10.1016/bs.aivir.2014.10.001
Li, Y., Lin, H. F., Jin, P., Chen, D. X., & Li, M. Y. (2014). The selectivity of Q-biotype Bemisia tabaci for different varieties of tobacco, Nicotiana tabacum. Chinese Journal of Applied Entomology, 51(5), 1320–1326.
Mauricio, R., & Rausher, M. D. (1997). Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution, 51(5), 1435–1444. https://doi.org/10.1111/j.1558-5646.1997.tb01467.x
McAuslane, H. J. (1996). Influence of leaf pubescence on oviposition and nymphal survival of Bemisia argentifolii (Homoptera: Aleyrodidae) on soybean. Environmental Entomology, 25(4), 834–841. https://doi.org/10.1093/ee/25.4.834
Moberly, J. G., Bernards, M. T., & Waynant, K. V. (2018). Key features and updates for Origin 2018. Journal of Cheminformatics, 10(1), Article 5. https://doi.org/10.1186/s13321-018-0259-x
Nakashima, K., Kato, S., Iwanami, S., & Murata, N. (1993). DNA probes that detect mycoplasmalike organisms (MLOs) and distinguish them from other MLOs. Applied and Environmental Microbiology, 59(4), 1206–1212. https://doi.org/10.1128/aem.59.4.1206-1212.1993
Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248. https://doi.org/10.1146/annurev-phyto-072910-095235
Ntui, V. O., Kong, K., Khan, R. S., Igawa, T., Janavi, G. J., Rabindran, R., Nakamura, I., & Mii, M. (2015). Resistance to Sri Lankan cassava mosaic virus (SLCMV) in genetically engineered cassava cv. KU50 through RNA silencing. PLoS ONE, 10(4), e0120551. https://doi.org/10.1371/journal.pone.0120551
Oriani, M. A. de O., & Vendramim, J. D. (2010). Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotropical Entomology, 39(6), 1002–1007. https://doi.org/10.1590/S1519-566X2010000600024
Pastório, M. A., Hoshino, A. T., Kitzberger, C. S. G., Bortolotto, O. C., de Oliveira, L. M., dos Santos, A. M., Lima, W. F., Menezes Junior, A. O., & Androcioli, L. G. (2023). The leaf color and trichome density influence the whitefly infestation in different cassava cultivars. Insects, 14(1), Article 4. https://doi.org/10.3390/insects14010004
Pattanaik, S., Patra, B., Singh, S. K., & Yuan, L. (2014). An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science, 5, Article 259. https://doi.org/10.3389/fpls.2014.00259
Peterson, R. K. D., Varella, A. C., & Higley, L. G. (2017). Tolerance: The forgotten child of plant resistance. PeerJ, 5, e3934. https://doi.org/10.7717/peerj.3934
Punnuri, S. M., Ayele, A. G., Harris-Shultz, K. R., Knoll, J. E., Coffin, A. W., Tadesse, H. K., Armstrong, J. S., Wiggins, T. K., Li, H., Sattler, S., & Wallace, J. G. (2022). Genome-wide association mapping of resistance to the sorghum aphid in Sorghum bicolor. Genomics, 114(4), 110408. https://doi.org/10.1016/j.ygeno.2022.110408
Saokham, K., Hemniam, N., Roekwan, S., Hunsawattanakul, S., Thawinampan, J., & Siriwan, W. (2021). Survey and molecular detection of Sri Lankan cassava mosaic virus in Thailand. PLoS ONE, 16(10), e0252846. https://doi.org/10.1371/journal.pone.0252846
Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., & Stanley, J. (2002). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: Evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology, 293(1), 63–74. https://doi.org/10.1006/viro.2001.1251
Simmons, A. T., Gurr, G. M., McGrath, D., & Nicol, H. I. (2003). Trichomes of Lycopersicon species and their effect on Myzus persicae (Sulzer) colonization. Entomologia Experimentalis et Applicata, 107(3), 221–230. https://doi.org/10.1046/j.1440-6055.2003.00376.x
Skoczek, A., Piesik, D., Wenda-Piesik, A., Buszewski, B., Bocianowski, J., & Wawrzyniak, M. (2017). Volatile organic compounds released by maize following herbivory or insect extract application and communication between plants. Journal of Applied Entomology, 141(8), 630–643. https://doi.org/10.1111/jen.12367
Tefera, T., Mugo, S., & Beyene, Y. (2016). Developing and deploying insect resistant maize varieties to reduce pre- and post-harvest food losses in Africa. Food Security, 8(1), 211–220. https://doi.org/10.1007/s12571-015-0537-7
Tlak Gajger, I., & Dar, S. A. (2021). Plant allelochemicals as sources of insecticides. Insects, 12(3), Article 189. https://doi.org/10.3390/insects12030189
Wang, D., Yao, X., Huang, G., Shi, T., Wang, G., & Ye, J. (2019). First report of Sri Lankan cassava mosaic virus infected cassava in China. Plant Disease, 103(6), 1437. https://doi.org/10.1094/PDIS-09-18-1590-PDN
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Food Agricultural Sciences and Technology

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.




