เซนเซอร์ที่เปลี่ยนสีได้จากอนุพันธ์ไนโตรคาร์บาโซลสำหรับตรวจวัดไอออนลบ (COLORIMETRIC SENSOR FROM NITROCARBAZOLE DERIVATIVES FOR ANION DETERMINATION)

Authors

  • อัญชลี สิริกุลขจร ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร
  • จิรเมธ ค้ำชู ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร
  • ทวีศักดิ์ กุลชาติชัย โรงเรียนพิษณุโลกพิทยาคม จ.พิษณุโลก

Keywords:

Nitrocarbazole, Anion Sensor, Colorimetric Sensor

Abstract

Two nitrocarbazole derivatives, mononitrocarbazole (MNC) and dinitrocarbazole (DNC), were investigated for their ability as a colorimetric sensor for anion recognition. Results from the study with eleven anions (CN-, F-, AcO-, H2PO4-, BzO-, NO3-, HSO4-, Cl-, ClO4-, Br- and I-) revealed that the color of MNC and DNC solution in DMSO was changed from pale yellow to red after adding strong base anions (CN-, F-, AcO-, H2PO4-, BzO-). A study of solvent media showed that the selectivity for CN- detection was obtained when using DCM as a solvent for MNC and MeOH as a solvent for DNC. A deprotonation of NH – carbazole by anions to generate deprotonated form caused the color change and an appearance of a new lmax at 500 nm in UV-Vis spectrum of the sensor. A determination of detection limit for anion sensing using UV-Vis was studied in DMSO and found that the lowest concentration was obtained from the detection of CN-. MNC and DNC could detect CN- at the detection limit of 3.0x10-5 M and 2.0x10-6 M, respectively.    

Downloads

Download data is not yet available.

References

[1] Zhou, Y., Zhang, J. F.; and Yoon, J. (2014, March). Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chemical Reviews. 114(10): 5511–5571.
[2] Miller, G. C., Pritsos, C. A. (2001, February). Unresolved Problems with the Use of Cyanide in Open Pit Precious Metals Mining. Cyanide: Social, Industrial and Economic Aspects, Proceedings of a Symposium held at Annual Meeting of TMS. 73-81.
[3] Boening, D. W.; and Chew, C. M. (1999, January). A Critical Review: General Toxicity and Environmental Fate of Three Aqueous Cyanide Ions and Associated Ligands. Water, Air, & Soil Pollution. 109(1-4): 67-79.
[4] Peter, B. N., James, R. A., Lyddiard, K. P. W.; and Christopher, P. (2011, March). Brain Glutathione as a Target for Aetiological factors in Neurolathyrism and Konzo. Food and Chemical Toxicology. 49(3): 662–667.
[5] Sónia, C. C., Renato, X. S., Sandra, M. C., Maria, S. S., Catarina R. O.; and Paula, I. M. (2012, January). Cyanide Preconditioning Protects Brain Endothelial and NT2 Neuron-Like Cells Against Glucotoxicity: Role of Mitochondrial Reactive Oxygen Species and HIF-1α. Neurobiology of Disease. 45(1): 206–218.
[6] Muir, G. D. (1977). Hazards in the Chemical Laboratory. The Royal Chemical Society: London.
[7] Ke, B., Chen, W., Ni, N., Cheng, Y., Dai, C., Dinh, H.; and Wang, B. (2013, March). A Fluorescent Probe for Rapid Aqueous Fluoride Detection and Cell Imaging. Chemical Communication (Camb). 49(25): 2494–2496.
[8] Kumar, S., Saini, R.; and Kaur, D. (2011, December). 2-(p-Nitrophenylthioureido)-3-aminonaphtho-1,4-quinone as a Water Tolerant. Sensor and Actuator B: Chemical. 160(1): 705-712.
[9] Schluepmann, H., Berke, L.; and Sanchez-Perez, G. F. (2011, November). Metabolism Control over Growth: A Case for Trehalose-6-phosphate in Plants. Journal of Experimental Botany. 63(9): 3379-3390.
[10] Lohr, H. G., Vogtle, F. (1985, March). Chromo- and Fluoroionophores. A New Class of Dye Reagents. Accounts of Chemical Research. 18(3): 65-72.
[11] Bissell, R. A., de Silva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M.; and Sandanayake, K. R. A. S. (1992). Molecular Fluorescent Signalling with ‘Fluor–Spacer–Receptor’ Systems: Approaches to Sensing and Switching devices via Supramolecular Photophysics. Chemical Society Reviews. 21: 187-195.
[12] Schmidtchen, F. P.; and Berger, M. (1997, August). Artificial Organic Host Molecules for Anions. Chemical Reviews. 97(5): 1609-1646.
[13] Beer. P. D.; and Gale. P. A. (2001, February). Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angewandte Chemie International Edition. 40(3): 486-516.
[14] Anzenbacher, P., Palacios, M. A., Kursikova, J.; and Marquez, M. (2005, August). Simple Electrooptical Sensors for Inorganic Anions. Organic Letters. 7(22): 5027-5030.
[15] Niu, H.-T., Jiang, X., He, J.; and Cheng, J.-P. (2008, September). A highly Selective and Synthetically Facile Aqueous-Phase Cyanide Probe. Tetrahedron Letters. 49: 6521-6524.
[16] Odago, M. O., Colabello, D. M.; and Lees, A. J. (2010, July). A Simple Thiourea Based Colorimetric Sensor for Cyanide Anion. Tetrahedron. 66: 7465-7471.
[17] Moon, K. S., Singh, N., Lee, G. W.; and Jang, D. O. (2007, July). Colorimetric Anion Chemosensor Based on 2-Aminobenzimidazole: Naked-eye Detection of Biologically Important Anions. Tetrahedron. 63: 9106-9111.
[18] Batista, R. M. F., Costa, S. P. G.; and Raposo, M. M. M. (2014, October). Selective Colorimetric and Fluorimetric Detection of Cyanide in Aqueous Solution Using Novel Heterocyclic Imidazo-Anthraquinones. Sensors and Actuators B: Chemical. 191: 791-799.
[19] Gupta, V. K., Singh, A. K.; and Gupta, N. (2014, August). Colorimetric Sensor for Cyanide and Acetate Ion using Novel Biologically Active Hydrazones. Sensors and Actuators B: Chemical. 204: 125-135.
[20] Thangadurai, T. D., Singh, N. J., Hwang, I.-C., Lee, J. W., Chandran, R. P.; and Kim, K. S. (2007, April). 2-Dimensional Analytical Approach for Anion Differentiation with Chromofluorogenic Receptors. Journal of Organic Chemistry. 72: 5461-5464.
[21] Shang, X., Li, X., Han, J., Jia, S., Zhang, J.; and Xu. X. (2012, December). Colorimetric and Fluorescence Turn-on Sensor for Biologically Important Anions Based on Carbazole Derivative. Inorganic Chemistry Communications. 16: 37-42.
[22] Sanchez, G., Curiel, D., Tarraga, A.; and Molina, P. (2014, July). Anion Binding Studies on Receptors Derived from the Indolo[2,3-a]carbazole Scaffold Having Different Binding Cavity Sizes. Sensors. 14: 14038-14049.
[23] Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P.; and Williams, D. J. (2003, May). Iron and Cobalt Ethylene Polymerization Catalysts: Variations on the Central Donor. Inorganic Chemistry. 42(11): 3454-3465.
[24] Hameurlaine, A.; and Dehaen, W. (2003, January). Synthesis of Soluble Oligocarbazole Derivatives. Tetrahedron Letters. 44(5): 957-959.
[25] Blouin, N.; and Leclerc, M. (2008, September). Poly (2,7-carbazole) s: Structure-Property Relationships. Accounts of Chemical Research. 41(9): 1110-1119.
[26] Mukthung, C., Woski, S. P.; and Wichai, U. (2007, October). Nitrocarbazole: Novel Universal Base for Biomolecular. 33rd Congress on Science and Technology of Thailand (pp. ORC-OR-023). Nakhon Si Thammarat: Walailak University.
[27] Shufen, Z., Danhong, Z.; and Jinzong, Y. (1995). Nitration of Carbazole and N-Alkylcarbazoles. Dyes and Pigments. 27(4): 287-296.
[28] Nagarajan, R., Muralidharan, D.; and Perumal, P. T. (2004, August). A New and Facile Method for the Synthesis of Nitrocarbazole by Urea Nitrate. Synthetic Communications. 34(7): 1259-1264.
[29] Mudadu, M. S., Singh, A. N.; and Thummel, R. P. (2008, August). Preparation and Study of 1,8- Di(pyrid-2/-yl)carbazoles. Journal of Organic Chemistry. 73: 6513-6520.
[30] Pielichowski, J.; and Puszynski. A. (1974, July). Eine neue Methode zur Nitrierung des Carbazols and Seiner Derivate. Monatshefte fur Chemie/Chemical Monthly. 105(4): 772-774.
[31] Kigga, M.; and Trivedi, D. R. (2014, January). Naked-eye Detection of Inorganic Fluoride Ion in Aqueous Media Using Base Labile Proton: A Different Approach. Journal of Fluorine Chemistry. 160: 1-7.
[32] Mukherjee, S., Paul, A. K.; and Stoeckli-Evans, H. (2014, June). A Family of Highly Selective Fluorescent Sensors for Fluoride Based on Excited State Proton Transfer Mechanism. Sensors and Actuators B: Chemical. 201: 1190-1199.
[33] Boiocchi, M., Boca, L. D., Gomez, D. E., Fabbrizzi, L., Licchelli, M.; and Monzani, E. (2004, July). Nature of Urea-Fluoride Interaction: Incipient and Definitive Proton Transfer. Journal of the American Chemical Society. 126: 16507-16514.
[34] Wu, J., Lai, G., Li, Z., Lu, Y., Leng, T., Shen, Y.; and Wang, C. (2016, September). Novel 2,1,3-benzothiadiazole Derivatives Used as Selective Fluorescent and Colorimetric Sensors for Fluoride Ion. Dyes and Pigments. 124: 268-276.
[35] pKb value of anion. (2560). สืบค้นเมื่อ 2 กุมภาพันธ์ 2560, จาก www.chem.wisc.edu/areas/reocj/pKatable/index.htm
[36] Mahapatra, A. K., Sahoo, P.; and Hazra, G. (2010, February). Synthesis of Indolo[3,2-b]carbazole-Based New Colorimetric Receptor for Anions: A Unique Color Change forFluoride Ions. Beilstein Journal of Organic Chemistry. 6(12): 1-8.

Downloads

Published

2018-08-16

How to Cite

สิริกุลขจร อ., ค้ำชู จ., & กุลชาติชัย ท. (2018). เซนเซอร์ที่เปลี่ยนสีได้จากอนุพันธ์ไนโตรคาร์บาโซลสำหรับตรวจวัดไอออนลบ (COLORIMETRIC SENSOR FROM NITROCARBAZOLE DERIVATIVES FOR ANION DETERMINATION). Srinakharinwirot University Journal of Sciences and Technology, 10(19, January-June), 170–185. Retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/140603