การประยุกต์ใช้นาโนไฟบริลเซลลูโลสที่สกัดจากเปลือกมังคุดเป็นอิมัลซิไฟเออร์เชิงเดี่ยว ในมายองเนส (APPLICATION OF NANOFIBRILLATED CELLULOSE EXTRACTED FROM MANGOSTEEN RIND AS A SINGLE EMULSIFIER IN MAYONNAISE)

Authors

  • พรสุดา จาบลาภ สาขาวิชาพิษวิทยาทางอาหารและโภชนาการ สถาบันโภชนาการ มหาวิทยาลัยมหิดล
  • ธัญญ์นลิน วิญญูประสิทธิ์ สถาบันโภชนาการ มหาวิทยาลัยมหิดล

Keywords:

Nanofibrillated Cellulose, Mangosteen Rind, Mayonnaise, Emulsifier

Abstract

          The aim of the study was to develop the new formulation of mayonnaise using this NFC as a single emulsifier. Nanofibrillated cellulose (NFC) was prepared by extraction of ground mangosteen (Garcinia mangostana L.) rind using hot sodium hydroxide solution and subsequent shearing using a high-pressure homogenizer. Egg yolk was replaced with NFC at different levels (5-10%) for the formulated mayonnaises. The texture, color, pH, particle size, rheology, and sensory liking scores were determined. The result found that the NFC concentration affected the physicochemical properties of the mayonnaise. The oil droplet diameter of the NFC mayonnaises was larger than those of the egg yolk mayonnaise. The oil droplet diameter and lightness values decreased with increasing NFC concentration, but on the contrary, the apparent viscosity increased. All mayonnaises exhibited gel-like structure and thixotropic shear thinning behavior. Additionally, no cream and serum layer separation were observed in all formulas after storage at 25°C for 90 days. Moreover, all NFC mayonnaises were accepted by panelists with the sensory liking scores between like slightly and like moderately.

Downloads

Download data is not yet available.

References

[1] Hasenhuettl, G. L. (2008). Food emulsifiers and their applications. 2nd ed. New York: Springer.
[2] McClements, D. J. (2005). Food Emulsions: Principles, Practices, and Techniques. 2nd ed. Boca Raton, FL: CRC Press.
[3] Hasenhuettl, G. L., and Hartel, R. W. (1997). Food emulsifiers and their applications. New York: Chapman and Hall.
[4] Surh, J.; Decker, E. A., and McClements, D. J. (2006, July). Properties and stability of oil-in-water emulsions stabilized by fish gelatin. Food Hydrocoll. 20(5), 596-606.
[5] Surh, J.; Ward, L. S., and McClements, D. J. (2006, August). Ability of conventional and nutritionally-modified whey protein concentrated to stabilize oil-in-water emulsions. Food Res Int. 39(7), 761-771.
[6] Yun, S. E, and Hong, S. T. (2007, July-August). Isolation and investigation of emulsifying properties of surface-active substances from rice bran. Food Hydrocoll. 21(5-6), 838-843.
[7] Turbak, A. F; Snyder, F. W., and Sandberg, K. R. (1983). Suspensions containing microfibrillated cellulose. U.S. Patent No. 4,378,381.
[8] Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L., and Zuluaga, R. (2016, June). Vegetable nanocellulose in food science: A review. Food Hydrocoll. 57, 178-186.
[9] Pelissari, F. M.; Andrade-Mahecha, M. M.; do Amaral Sobral, P. J., and Menegalli, F. C. (2017, November). Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J. Colloid Interface Sci. 505, 154-167.
[10] Deepa, B; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A. P.; Oksman, K.; Faria, M.; Thomas, S., and Pothan, L. A. (2015, April). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose. 22(2), 1075-1090.
[11] Jiang, Feng, and Hsieh, You-Lo. (2013, June). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym. 95(1), 32-40.
[12] Kardam, A.; Raj, K. R.; Srivastava, S., and Srivastava, M. M. (2014, February). Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Techn Environ Policy. 16(2), 385-393.
[13] Chen, Y.; Wu, Q.; Huang, B.; Huang, M., and Ai, X. (2014, December). Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-wastes. BioResources. 10(1), 684-696.
[14] Rehman, N.; de Miranda, M. I. G.; Rosa, S. M.; Pimentel, D. M.; Nachtigall, S. M., and Bica, C. I. (2014, June). Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J. Polym Environ. 22(2), 252-259.
[15] García, A.; Gandini, A.; Labidi, J.; Belgacem, N.; and Bras, J. (2016, December). Industrial and crop wastes: A new source for nanocellulose biorefinery. Ind Crop Prod. 93, 26-38.
[16] Zarena, A. S.; Bhattacharya, S.; and Kadimi, U. S. (2012, November). Mangosteen oil-in-water emulsions: rheology, creaming, and microstructural characteristics during storage. Food Bioprocess Technol. 5(8), 3007-3013.
[17] Winuprasith, T; and Suphantharika, M. (2013, August). Nanofibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll. 32(2), 383-394.
[18] Winuprasith, T; and Suphantharika, M. (2015, January). Properties and stability of oil-in-water emulsions stabilized by Nanofibrillated cellulose from mangosteen rind. Food Hydrocoll. 43, 690-699.
[19] Worrasinchai, S; Suphantharika, M; Pinjai, S, and Jamnong, P. (2006, January). β-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise. Food hydrocoll. 20(1), 68-78.
[20] Guerra-Rosas, M. I.; Morales-Castro, J.; Ochoa-Martínez, L. A.; Salvia-Trujillo, L., and Martín-Belloso, O. (2016, January). Long-term stability of food-grade nanoemulsions from high
methoxyl pectin containing essential oils. Food hydrocoll. 52, 438-466.
[21] Clark, A. H., and Ross-Murphy, S. B. (1987). Polysaccharides: Structural Diversity and Functional Versatility. 2nd ed. Boca Raton, Florida. pp. 385-386.
[22] Aveyard, Robert; Binks, B. P., and Clint, J. H. (2003). Encyclopedia of Biocolloid and Biointerface Science, 2 Volume Set. New Jersey: John Wiley and Sons.
[23] Frelichowska, J.; Bolzinger, M. A., and Chevalier, Y. (2010, November). Effects of solid particle content on properties of o/w Pickering emulsions. J. Colloid Interface Sci. 351(2), 348-356.
[24] Kalashnikova, I; Bizot, H; Cathala, B, and Capron, I. (2011). Engineering Aspect of Food Emulsification and Homogenization. Boca Raton, Florida: CRC Press. p. 117.
[25] Rayner, M; Marku, D; Eriksson, M.; Sjöö, M.; Dejmek, P., and Wahlgren, M. (2014, September). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids Surf A Physicochem Eng Asp. 458, 48-62.
[26] Li, Z; Wu, H.; Yang, M.; Xu, D; Chen, J.; Feng, H; Lu, Y.; Zhang, L.; Yu, Y., and Kang, W. (2018, Febuary). Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohyd Polym. 181, 224-233.
[27] Xhanari, Klodian; Syverud, K., and Stenius, P. (2011, Febuary). Emulsions stabilized by microfibrillated cellulose: The effect of hydrophobization, concentration and o/w ratio. J. Dispers Sci Technol. 32, 447.
[28] Fujisawa, S., Togawa, E., and Kuroda, K. (2017, November). Nanocellulose-stabilized Pickering emulsions and their applications. Sci Technol Adv Mater. 18(1), 959-971.
[28] Oza, K. P. , and Frank, S. G. (1986). Multiple Emulsion: Technology and Application. New Jersey: John Wiley and Sons.
[30] Carrillo, Carlos A.; Nypelö, T. E., and Rojas, O. J. (2015, May). Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. J. Colloid Interface Sci. 445, 166-173.

Downloads

Published

2020-03-30

How to Cite

จาบลาภ พ. ., & วิญญูประสิทธิ์ ธ. . (2020). การประยุกต์ใช้นาโนไฟบริลเซลลูโลสที่สกัดจากเปลือกมังคุดเป็นอิมัลซิไฟเออร์เชิงเดี่ยว ในมายองเนส (APPLICATION OF NANOFIBRILLATED CELLULOSE EXTRACTED FROM MANGOSTEEN RIND AS A SINGLE EMULSIFIER IN MAYONNAISE). Srinakharinwirot University Journal of Sciences and Technology, 11(22, July-December), 119–130. retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/240372