คุณภาพทางจุลชีววิทยาของน้ำเสียหลังผ่านการกำจัดฤทธิ์ของยาปฏิชีวนะโดยการใช้ไฮโดรเจนเปอร์ออกไซด์ที่อุณหภูมิสูง (MICROBIOLOGICAL EVALUATION OF COMBINED HYDROGEN PEROXIDE AND HEAT TREATMENT ON ANTIBIOTIC WASTEWATER)

Authors

  • วิภาวดี สงัดกิจ การจัดการความปลอดภัยอาหาร สาขาเทคโนโลยีการหมัก คณะอุตสาหกรรมเกษตร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
  • จิราวรรณ สุภาพรูป ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา
  • นพพล วีระนพนันท์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา
  • เคนเนท ดับเบิลยู ฟอสเตอร์ ภาควิชาฟิสิกส์ มหาวิทยาลัยซีราคิวส์
  • อาลักษณ์ ทิพยรัตน์ ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

Keywords:

Antibiotic Wastewater, Heat Treatment, Hydrogen Peroxide, Microbiological Evaluation

Abstract

          The release of trace pharmaceutical antibiotics into the environment can cause a major upset of an ecological balance. One of the promising technologies for treating antibiotic wastewater is the application of advanced oxidation processes.   

          Method: Hydrogen peroxide (H2O2) treatment was proposed as a pretreatment to remove ceftazidime, ceftriaxone, and cephalexin contaminants in a model of antibiotic wastewater. An averaged concentration of antibiotic contained in the first washed wastewater obtained from the major cleaning at the end of production was determined at approximately 10 µg/mL. The model wastewater of antibiotic production was formulated at 60 µg/mL of each antibiotics for safety reason and practical aspect of High Performance Liquid Chromatography (HPLC) analysis. H2O2 concentrations were varied at 1 3 and 5% (w/v) and the incubation temperatures were set at 60 80 and 100oC. E. coli culture at log 6 CFU/mL initial density were added to the treated wastewater to evaluate the remaining antibiotic toxicity and assess the biocidal and biostatic effects. The inhibitory effect of H2O2 residues at the end of H2O2 treatment was neutralized successfully by adding dried bakers’ yeast to catalyze oxygen and water conversions.

          Result: Higher temperature, higher hydrogen peroxide concentration and longer hydrogen peroxide treatment time were the most effective to degrade antibiotic pollutants. The measurement of trace antibiotic at the end of H2O2 treatment suggested the different degree of degradation recalcitrance following this order ceftazidime was provided better degradation than ceftriaxone and cephalexin respectively. At 100oC, complete removal of antibiotics of 5% H2O2 treatment was achieved within 30 min. Longer duration was required in the case of 1 and 3% H2O2 treatment at 60 and 120 min, respectively. Strong oxidation condition (100oC and 5% H2O2) enabled instant removals of ceftriaxone and cephalexin. Hydroxyl radicals (•OH) was assumed to accelerate the fast degradation rate of antibiotic contaminants.

            Conclusion: Combined hydrogen peroxide and heat treatment has been successfully applied for the degradation of antibiotic wastewater, either to less harmful compounds or to their complete mineralization. The hydroxyl radical’s availability was hypothesized to provide strong oxidation potency of this successful H2O2 treatment scheme.

Downloads

Download data is not yet available.

References

1] Gracia-Lor, E.; Sancho, V.J.; Serrano, R., and Hernandez, F. (2012). Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants at the Spanish Mediterranean Area of Valencia. Chemosphere. 87(5), 453-462.
[2] Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X., and Meng, W. (2015). Occurrence of Antibiotics and Antibiotic Resistance Genes in a Sewage Treatment Plant and Its Effluent-Receiving River. Chemosphere. 119, 1379-1385.
[3] Rosal, R.; Rodruguez, A.; Perdigan-Melan, J.A.; Petre, A.; GarcoaCalvo, E.; Gamez, M.J.; Aguera, A., and FernandezAlba, A.R. (2010). Occurrence of Emerging Pollutants in Urban Wastewater and Their Removal through Biological Treatment Followed by Ozonation. Water Research. 44(2), 578-588.
[4] Zhou, L.J.; Ying, G.G.; Zhao, J.F.; Yang, J.F.; Wang, L.; Yang, B., and Liu, S. (2011). Trends in The Occurrence of Human and Veterinary Antibiotics in The Sediments of The Yellow River, Hai River and Liao River in Northern China. Environment, Pollutant. 159(7), 1877-1885.
[5] Kemper, N. (2008). Veterinary Antibiotics in The Aquatic and Terrestrial Environment. Ecological Indicators. 8(1), 1-13.
[6] Halling-Sorensen, B.; Nielsen, S.N.; Lansky, P.F.; Ingerslev, F.; Lutzhoft, H.C., and Jorgensen, S.E. (1998). Occurrence, Fate, and Effects of Pharmaceutical Substances in The Environment - A Review. Chemosphere. 36(2), 357-393.
[7] Rizzo, L.; Anselmo, A., and Fiorentino, A. (2012). Effect of Solar Radiation on Multidrug Resistant E. coli Strains and Antibiotic Mixture Photodegradation in Wastewater Polluted Stream. Science of the Total Environment. 427-428, 263-268.
[8] Meyer, MT.; Bumgarner, JE.; Thurman, EM.; Hostetler, KA., and Daughtridge, J.V. (1999). Occurrence of Antibiotics in Liquid Waste at Confined Animal Feeding Operations in Surface and Groundwater. In Proc. 20th Meeting of the Society of Environmental Toxicology and Chemistry. Pensocola, Fla., p. 111.
[9] Halling-Sørensen, B.; Nors, Nielsen S.; Lankzky, PF.; Ingerslev, F.; Holten, L€utzhøft HC., and Jørgensen, SE. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment. A review Chemosphere. 36, 357-393.
[10] K€ummerer, K.; Al-Ahmad, A., and Mersch-Sundermann, V. (2000). Biodegradability of Some Antibiotics, Elimination of the Genotoxicity and Affection of wastewater Bacteria in a Simple Test. Chemosphere. 40, 701-710.
[11] Galloway, JM.; Haggard, BE.; Meyers, MT., and Green, WR. (2005). Occurrence of Pharmaceuticals and Other Organic Wastewater Constituents in Selected Streams in Northern Arkansas. 2004. Scientific Investigations Report 2005-5140 Reston. VA: U.S. Geological Survey.
[12] Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X., and Meng, W. (2015). Occurrence of Antibiotics and Antibiotic Resistance Genes in a Sewage Treatment Plant and Its Effluent-Receiving River. Chemosphere. 119, 1379-1385.
[13] Akiyama, T.; and Savin, MC. (2010). Populations of Antibiotic-Resistant Coliform Bacteria Change Rapidly in a Wastewater Effluent Dominated Stream. Science of the Total Environment. 408, 6192-6201.
[14] USEPA. (1999). Wastewater Technology Fact Sheet: Chlorine Disinfection. Retrieved October 14, 2015, from http://water.epa.gov/scitech/wastetech/upload/2002_06_28_mtb_chlo.pdf
[15] USEPA. (1999). Wastewater Technology Fact Sheet: Ultraviolet Disinfection. Retrieved October 14, 2015, from http://water.epa.gov/scitech/wastetech/upload/2002_06_28_mtb_ uv.pdf
[16] Rizzo, L.; Fiorentino, A., and Anselmo, A. (2011). Effect of Solar Radiation on Multidrug Resistant E. coli Strains and Antibiotic Mixture Photo Degradation in Wastewater Polluted Stream. Science of The Total Environment. 427, 263-268.
[17] Balcıoglu, A.I., and Otker, M. (2003). Treatment of Pharmaceutical Wastewater Containing Antibiotics by O3 and O3/H2O2 Processes. Chemosphere. 50(1), 85-95.
[18] Lin, Y.A.; Lin, C.F.; Chiou, J.M.; and Hong, A.P.K. (2009). O3 and O3/H2O2 Treatment of Sulfonamide and Macrolide Antibiotics in Wastewater. Journal of Hazardous Materials. 171(1), 452–458.
[19] Rosario-Ortiz, L.F.; Wert, C.E., and Snyder, A.S. (2010). Evaluation of UV/H2O2 Treatment for The Oxidation of Pharmaceuticals in Wastewater. Water Research. 44(5), 1440-1448.
[20] Naddeo, V.; Belgiorno, V.; Kassinos, D.; Mantzavinos, D., and Meric, S. (2010). Ultrasonic Degradation, Mineralization and Detoxification of Diclofenac in Water: Optimization of Operating Parameters. Ultrasonic Sonochemistry. 17(1), 179-185.
[21] Sangadkit, W.; Rattanabumrung, O.; Supanivatin, P., and Thipayarat, A. (2012). Practical Coliform and Escherichia coli Detection and Enumeration for Industrial Food Samples using Low-cost Digital Microscopy. Procedia Engineering. 32, 126-133.
[22] Ogusucu, R.; Rettori, D.; Munhoz, CD.; Netto, SEL.; and Augusto, O. (2007). Reactions of Yeast Thioredoxin Peroxidases I and II with Hydrogen Peroxide and Peroxynitrite: Rate Constants by Competitive Kinetics. Free Radical Biology and Medicine. 42, 326-334.
[23] Wong, CM.; Siu, KL.; and Jin, DY. (2004). Peroxiredoxin-Null Yeast Cells are Hypersensitive to Oxidative Stress and are Genomically Unstable. Journal of Biological Chemistry. 279, 23207-23213.
[24] Lamsal, R.; Walsh, M.E., and Gagnon, G.A. (2011). Comparison of Advanced Oxidation Processes for The Removal of Natural Organic Matter. Water Research. 45(10), 3263-3269.
[25] Cesaro, A.; Naddeo, V., and Belgiorno, V. (2013). Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. Journal of Biomedical Science. 4, 8.
[26] Kusic, H.; Koprivanac, N., and Bozic, AL. (2006). Minimization of Organic Pollutant Content in Aqueous Solution by Means of AOPs: UV- and Ozone-based Technologies. Journal of Chemical Engineering. 123, 127-137.
[27] Wols, BA.; Hofman-Caris, CHM.; Harmsen, DJH., and Beerendonk, EF. (2013). Degradation of 40 Selected Pharmaceuticals by UV/H2O2. Water Research. 47, 5876-5888.

Downloads

Published

2020-03-30

How to Cite

สงัดกิจ ว. ., สุภาพรูป จ. . ., วีระนพนันท์ น. ., ดับเบิลยู ฟอสเตอร์ เ. ., & ทิพยรัตน์ อ. . (2020). คุณภาพทางจุลชีววิทยาของน้ำเสียหลังผ่านการกำจัดฤทธิ์ของยาปฏิชีวนะโดยการใช้ไฮโดรเจนเปอร์ออกไซด์ที่อุณหภูมิสูง (MICROBIOLOGICAL EVALUATION OF COMBINED HYDROGEN PEROXIDE AND HEAT TREATMENT ON ANTIBIOTIC WASTEWATER). Srinakharinwirot University Journal of Sciences and Technology, 11(22, July-December), 157–173. Retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/240382