ผลของความเข้มข้นของตัวยับยั้งและปริมาณเซลล์เริ่มต้นต่อการเพิ่มจำนวนเชื้อบาซิลลัส (EFFECT OF INHIBITORS AND INITIAL CELL CONCENTRATIONS ON THE ENRICHMENT BACILLUS CEREUS )

Authors

  • วิภาวดี สงัดกิจ การจัดการความปลอดภัยอาหาร สาขาเทคโนโลยีการหมัก คณะอุตสาหกรรมอาหาร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
  • อาณัติ ดีพัฒนา ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา
  • อาลักษณ์ ทิพยรัตน์ ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

Keywords:

Bacillus cereus, Polymyxin B sulfate, Amoxicillin ceftriaxone, Inhibitor concentration, Initial concentration

Abstract

             Conventionally, the selectivity of Bacillus cereus in the enrichment step is only limited to the addition of 10 mg/L Polymyxin B sulfate. At this concentration, the growth of B. cereus is compromised and its selectiveness against other competing Gram-positive bacteria for industrial food samples is disputable. This research was aimed to study the effects of initial cell concentration and concentration of selective inhibitors on the recovery of B. cereus in selective enrichment step. The inhibitory effect of three conventional and alternative inhibitors (i.e., Polymyxin B sulfate, amoxicillin, and ceftriaxone) was evaluated at different initial cell densities (101, 103, and 105 CFU/mL) to determine the optimal B. cereus inhibitors and their suitable dosage. These selective inhibitors were added to Tryptic Soy Broth (TSB) and the recovery of B. cereus was evaluated using viable cell count on Tryptic Soy Agar (TSA). The concentrations of these selected inhibitors were formulated by doubling the suggested strength (recommended by most standard enrichment protocols) and reducing the standard concentration by half. Hence, the treatment of inhibitors was varied at 5, 10, and 20 mg/L. The cell recovery was performed at 30 oC for 24 h. In this research, ceftriaxone showed good preference towards the growth of B. cereus in TSB with ceftriaxone at 20 mg/L and significant toxicity against E. coli and S. aureus. At low initial cell concentrations, no viable B. cereus cell was detected in all amoxicillin treatments. Generally, higher concentrations of the selective inhibitors increased the toxicity of the selective broth and the initial cell concentration resulted in a subtle consequence and directly affected the recovery of B. cereus. The lower initial cell concentrations produced longer lag phase and sometimes produced false negative results due to the inhibitory effect of the strong inhibitor. The selectivity for B. cereus has to improve.

Downloads

Download data is not yet available.

References

[1] Al-Abri, S. Seif; Al-Jardani, K. Amina; Al-Hosni, S. Mohammed; Kurupb, J. Padmamohan; Al-Busaidi, S; and Beeching, J. Nicholas. (2011, May). A Hospital Acquired Outbreak of Bacillus cereus Gastroenteritis, Oman. Journal of Infection and Public Health. 4: 180-186.
[2] Wamnes, J. (2011, February). Outbreak at Okeechobee Correctional Institution. Food for Thought. Food and Waterborne Disease Program. USA.
[3] EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control). (2016). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA Journal. 14(12): 231. http://dx.doi.org/10.2903/j.efsa.2016.4634. (4634).
[4]Ehling-Schulz, M; Fricker, M; and Scherer, S. (2004). Bacillus cereus, the Causative Agent of an Emetic Type of Food-Borne Illness. Molecular Nutrition & Food Research. 48(7): 479-487.
[5] Bottone, EJ. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbilogy Reviews. 23(2): 382-398.
[6]Schlegelova, J; Brychta, J; Klimova, E; Napravnikova, E; and Babak, V. (2008). The Prevalence of and Resistance to Antimicrobial Agents of Bacillus cereus Solates from Foodstuffs. Veterinarni Medicina. 48(1): 331-338.
[7]USFDA. (2009). Unilever Conducts Nationwide Voluntary Recall of Slim-Fast® Ready-to-Drink Products in Cans Due to Possible Health Risk. Retrieved January 2, 2013, from http://www.fda.gov
[8]Tallent, SM; Kotewicz, KM; Strain, EA; and Bennett, RW. (2012). Efficient Isolation and Identification of Bacillus cereus Group. Journal of AOAC International. 95(2): 446-451.
[9] Donovan, KO. (1958). A Selective Medium for Bacillus cereus in Milk. Journal of Applied Microbiology. 21(1): 100-103.
[10] Wong, M.H; Zeng, L; Liu, J.H; and Chen, S. (2013). Characterization of Salmonella Food Isolates with Concurrent Resistance to Ceftriaxone and Ciprofloxacin. Foodborne Pathogens and Disease. 10(1): 42-46.
[11] Wagner, RD; Johnson, SJ; Cerniglia, CE; and Erickson, BD. (2011). Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple Beta- Lactamases. Antimicrobial Agents and Chemotherapy. 55(11): 4990-4998.
[12] Qadri, S.M; Ueno, Y; and Cunha, B.A. (1996). Susceptibility of Clinical Isolates to Expanded-Spectrum Beta-Lactams Alone and in the Presence of Beta-Lactamase Inhibitors. Chemotherapy. 42(5): 334-342.
[13]Fazlani, SA; Khan, SA; Faraz, S; and Awan, MS. (2011). Antimicrobial Susceptibility of Bacterial Species Identified from Mastitic Milk Samples of Camel. African Journal of Biotechnology. 10(15): 2959-2964.
[14]Chon, JW; Hyeon, JY; Park, JH; Song, KY; Kim, JH; and Seo, KH. (2012). Improvement of Mannitol-Yolk-Polymyxin B Agar by Supplementing with Trimethoprim for Quantitative Detection of Bacillus cereus in Foods. Journal of Food Protection. 75(7): 1342-1345.
[15]Gottfried, M; Orrego, C; Keynan, A; and Halvorson, HO. (1979). Specific Inhibition of Outgrowth of Bacillus subtilis Spores by Novobiocin. Journal of Bacteriology. 138(2): 314-319.
[16]Abd, AHA; Abood, AS; and AbdelA'Al, NI. (2012). Study the Susceptibility of Bacillus cereus Isolated from Milk and Milk Products to Antibiotics. Journal of Kerbala University. 10(3): 1-4.
[17]ISO. (2006). Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Determination of Low Numbers of Presumptive Bacillus cereus- Most Propable Number Tecnique and Detection Method. International Organization for Standardization. Geneva.
[18] Khueankhancharoen, J; and Thipayarat, A. (2011). Application of Modified Drop Plate Technique (MDPT) and Logistic Model to Optimize Non-Selective Substrates for Salmonella Typhi Resuscitation. Asian Journal of Food and Agro-industry. 4(6): 349-358.
[19] Donovan, KO. (1958). A Selective Medium for Bacillus cereus in Milk. Journal of Applied Microbiology. 21(1): 100-103.
[20] Evans, ME; Feola, DJ; and Rapp, RP. (1999). Polymyxin B Sulfate and Colistin: Old Antibiotics for Emerging Multiresistant Gram-Negative Bacteria. Annals of Pharmacotherapy. 33(9): 960-967.
[21]Hermsen, ED; Sullivan, CJ; and Rotschafer, JC. (2003). Polymyxins: Pharmacology, Pharmacokinetics, Pharmacodynamics, and Clinical Applications. Infectious Disease Clinics of North America. 17(3): 545-562.
[22]Godic, K; and Seme, K. (2009). Antimicrobial Susceptibility, Beta-Lactamase and Enterotoxin Production in Bacillus cereus Isolates from Clinical and Food Samples. Folia Microbiologica. 54(3): 233-238.
[23] Turnbull, PC; Sirianni, NM; LeBron, CI; Samaan, MN; Sutton, FN; Reyes, AE; and Peruski, LF. (2004). Mics of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a Range of Clinical and Environmental Sources as Determined by the Etest. Journal of Clinical Microbiology. 42(8): 3626-3634.
[24] Ko, SY; Chung, HJ; Sung, HS; and Kim, MN. (2007). Emergence of Beta-Lactam-Dependent Bacillus cereus Associated with Prolonged Treatment with Cefepime in a Neutropenic Patient. Korean Journal of Laboratory Medicine. 27(3): 216-220.

Downloads

Published

2020-07-01

How to Cite

สงัดกิจ ว. ., ดีพัฒนา อ. ., & ทิพยรัตน์ อ. . (2020). ผลของความเข้มข้นของตัวยับยั้งและปริมาณเซลล์เริ่มต้นต่อการเพิ่มจำนวนเชื้อบาซิลลัส (EFFECT OF INHIBITORS AND INITIAL CELL CONCENTRATIONS ON THE ENRICHMENT BACILLUS CEREUS ). Srinakharinwirot University Journal of Sciences and Technology, 12(23, January-June), 124–135. Retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/241318