SERUM BRAIN-DERIVED NEUROTROPHIC FACTOR, SERUM LIPIDS AND COGNITION IN THAI PATIENTS WITH ALZHEIMER DISEASE

Authors

  • พร้อมจิต ศรียาภัย Department of Pathology, Faculty of Medicine, Srinakharinwirot University.
  • รุ่งทิพย์ สร้อยอัมพรกุล ภาควิชาชีวเคมี คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • นฤมล คงสาคร ภาควิชาอายุรศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
  • มาลัย ทวีโชติภัทร์ ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
  • วาสนา สุขุมศิริชาติ ภาควิชาชีวเคมี คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
  • ภนารี บุษราคัมตระกูล ภาควิชาสรีรวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

Keywords:

Alzheimer’s disease, Serum brain-derived neurotrophic factor (BDNF), Serum lipids, Thai mini mental state examination, Cognitive function

Abstract

Brain-Derived Neurotrophic Factor (BDNF) is a key protein molecule that promotes neuronal differentiation, stimulates neurite outgrowth, and modulates brain plasticity. BDNF is involved in learning and memory, so changes in its level may play a crucial role in Alzheimer’s disease (AD). Since lipids are major structural components of neuronal cell membrane, dyslipidemia may affect neuronal functions that somewhat relate to AD. This study aimed to investigate the levels of serum BDNF protein, serum lipids and the cognitive function of Thai AD patients comparing to the healthy controls, and to search for the corelations between BDNF and other studying parameters. Thirty control and ten AD subjects
with mean ages of 61.20±2.04 years, and 79.73±2.17 years, respectively, were participated in the study.  The criteria of Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V, 2013) was used for AD diagnosis with Thai Mini-Mental State Examination (TMMSE) as a tool to assess cognitive functions.  The levels of serum BDNF were analyzed using ELISA kit, while serum lipids were determined by colorimetric and homogeneous methods. The comparison of parameters between the patients and the control groups were statistically assessed by Mann-Whitney U test, whereas the correlations between serum BDNF levels and other parameters were assessed by Pearson’s test using the SPSS software (version 23.0). The results of mean TMMSE scores demonstrated that the AD patients had significantly poorer cognitive function than the control subjects (p<0.001). The serum BDNF level in the AD patients (293.77±44.71 µg/mL) was lower than that of the control subjects (354.89±26.71 µg/mL) without statistically significant difference. The serum lipid levels in the AD patient were not significantly different from those in the control group, probably affected by the patients’ taking of a lipid-lowering medicine. No significant correlation was observed between serum BDNF and lipid levels as well as between serum BDNF and TMMSE scores. In summary, our findings confirmed the benefit of TMMSE scores in diagnosis of AD, and suggested a decrease in serum BDNF level in the AD patients although insignificant difference was found. Further study, however, in a large number of patients are required to confirm whether BDNF is suitable as a biomarker for AD.

Downloads

Download data is not yet available.

References

Jorm, A.F., Korten, A.E., & Henderson, A.S. (1987). The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatrica Scandinavica, 76(5), 465-479.

Ritchie, K., & Kildea, D. (1995). Is senile dementia "age-related" or "ageing-related"?-Evidence from meta-analysis of dementia prevalence in the oldest old. Lancet, 346(8980), 931-934.

Senanarong, V., Poungvarin, N., Sukhatunga, K., Prayoonwiwat, N., Chaisewikul, R., Petchurai, R., Praditsuwan, R., Udompunthurak, S., & Viriyavejakul, A. (2001). Cognitive status in the community dwelling Thai elderly. Journal of the Medical Association of Thailand, 84(3), 408-416.

Fariñas, I., Jones, K.R., Tessarollo, L., Vigers, A.J., Huang, E., Kirstein, M., de Caprona, D.C., Coppola, V., Backus, C., Reichardt, L.F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. Journal of Neuroscience, 21(16), 6170-6180.

Cheng, P.L., Song, A.H., Wong, Y.H., Wang, S., Zhang, X., & Poo, M.M. (2011). Self-amplifying autocrine actions of BDNF in axon development. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18430-18435.

Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H.P., Bonhoeffer, T., & Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24(2), 401-414.

Saarelainen, T., Pussinen, R., Koponen, E., Alhonen, L., Wong, G., Sirviö, J., & Castrén, E. (2000). Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse, 38(1), 102-104.

Minichiello, L. (2009). TrkB signalling pathways in LTP and learning. Nature Reviews Neuroscience, 10(12), 850-860.

Laske, C., Stransky, E., Leyhe, T., Eschweiler, G.W., Wittorf, A., Richartz, E., Bartels, M., Buchkremer, G., & Schott, K. (2006). Stage-dependent BDNF serum concentrations in Alzheimer's disease. Journal of Neural Transmission, 113(9), 1217-1224.

Fratiglioni, L., Grut, M., Forsell, Y., Viitanen, M., Grafström, M., Holmén, K., Ericsson, K., Bäckman, L., Ahlbom, A., & Winblad, B. (1991). Prevalence of Alzheimer's disease and other dementias in an elderly urban population: relationship with age, sex, and education. Neurology, 41(12), 1886-1892.

Beeri, M.S., & Sonnen, J. (2016). Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology, 86(8), 702-703.

Lee, J.G., Shin, B.S., You, Y.S., Kim, J.E., Yoon, S.W., Jeon, D.W., Baek, J.H., Park, S.W., & Kim, Y.H. (2009). Decreased Serum Brain-Derived Neurotrophic Factor Levels in Elderly Korean with Dementia. Psychiatry Investigation, 6(4), 299-305.

Holsinger, R.M., Schnarr, J., Henry, P., Castelo, V.T., & Fahnestock, M. (2000). Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer's disease. Brain research. Molecular brain research, 76(2), 347-354.

Laske, C., Stransky, E., Eschweiler, G.W., Klein, R., Wittorf, A., Leyhe, T., Richartz, E., Köhler, N., Bartels, M., Buchkremer, G., & Schott, K. (2007). Increased BDNF serum concentration in fibromyalgia with or without depression or antidepressants. Journal of Psychiatric Research, 41(7), 600-605.

Buchman, A.S., Yu, L., Boyle, P.A., Schneider, J.A., De Jager, P.L., & Bennett, D.A. (2016). Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology, 86(8), 735-741.

Kim, B.Y., Lee, S.H., Graham, P.L., Angelucci, F., Lucia, A., Pareja-Galeano, H., Leyhe, T., Turana, Y., Lee, I.R., Yoon, J.H., & Shin, J.I. (2017). Peripheral Brain-Derived Neurotrophic Factor Levels in Alzheimer's Disease and Mild Cognitive Impairment: a Comprehensive Systematic Review and Meta-analysis. Molecular Neurobiology, 54(9), 7297-7311.

Ng, T.K.S., Ho, C.S.H., Tam, W.W.S., Kua, E.H., & Ho, R.C-M. (2019). Decreased serum Brain-Derived Neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): A systematic review and meta-analysis. International Journal of Molecular Sciences, 20(2), 257. https://doi.org/10.3390/ijms20020257

Teillon, S., Calderon, G.A., & Rios, M. (2010). Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPAR alpha and FGF21 in mice with hepatic ablation of brain-derived neurotropic factor. Journal of Endocrinology, 205(1), 37-47.

Liu, H.H., & Li, J.J. (2015). Aging and dyslipidemia: a review of potential mechanisms. Ageing Research Reviews, 19, 43-52.

Wilson, P.W., D'Agostino, R.B., Levy, D., Belanger, A.M., Silbershatz, H., & Kannel, W.B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837-1847.

Ericsson, S., Eriksson, M., Vitols, S., Einarsson, K., Berglund, L., & Angelin, B. (1991). Influence of age on the metabolism of plasma low density lipoproteins in healthy males. Journal of Clinical Investigation, 87(2), 591-596.

Shanmugasundaram, M., Rough, S.J., & Alpert, J.S. (2010). Dyslipidemia in the elderly: should it be treated? Clinical Cardiology, 33(1), 4-9.

Zhao, Y.Y., Cheng, X.L., & Lin, R.C. (2014). Lipidomics applications for discovering biomarkers of diseases in clinical chemistry. International Review of Cell and Molecular Biology, 313, 1-26.

Pohlel, K., Grow, P., Helmy, T., & Wenger, N.K. (2006). Treating dyslipidemia in the elderly. Current Opinion in Lipidology, 17(1), 54-57.

Wong, M.W., Braidy, N., Poljak, A., Pickford, R., Thambisetty, M., & Sachdev, P.S. (2017). Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers. Alzheimer's & Dementia, 13(7), 810-27.

Björkhem, I., & Meaney, S. (2004). Brain cholesterol: long secret life behind a barrier. Arteriosclerosis, thrombosis, and vascular biology, 24(5), 806-815.

Wong, M.W., Braidy, N., Poljak, A., & Sachdev, P.S. (2017). The application of lipidomics to biomarker research and pathomechanisms in Alzheimer's disease. Current Opinion in Psychiatry, 30(2), 136-144.

Korade, Z., & Kenworthy, A.K. (2008). Lipid rafts, cholesterol, and the brain. Neuropharmacology, 55(8), 1265-1273.

Kivipelto, M., Helkala, E.L., Laakso, M.P., Hänninen, T., Hallikainen, M., Alhainen, K., Livonen, S., Mannermaa, A., Tuomilehto, J., Nissinen, A., & Soininen, H. (2002). Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Annals of Internal Medicine, 137(3), 149-155.

Solomon, A., Kåreholt, I., Ngandu, T., Wolozin, B., Macdonald, S.W., Winblad, B., Nissinen, A., Tuomilehto, J., Soininen, H., & Kivipelto, M. (2009). Serum total cholesterol, statins and cognition in non-demented elderly. Neurobiology of Aging, 30(6), 1006-1009.

Song, F., Poljak, A., Crawford, J., Kochan, N.A., Wen, W., Cameron, B., Lux, O., Brodaty, H., Mather, K., Smythe, G.A., & Sachdev, P.S. (2012). Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLOS ONE, 7(6), e34078. https://doi.org/10.1371/journal.pone.0034078

Corder, E.H., Saunders, A.M., Strittmatte, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., & Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261(5123), 921-923.

Dart, C. (2010). Lipid microdomains and the regulation of ion channel function. Journal of physiology, 588(17), 3169-3178.

Ehehalt, R., Keller, P., Haass, C., Thiele, C., & Simons, K. (2003). Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. Journal of Cell Biology, 160(1), 113-123.

Xue-Shan, Z., Juan, P., Qi, W., Zhong, R., Li-Hong, P., Zhi-Han, T., Zhi-Sheng, J., Gui-Xue, W., & Lu-Shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer's disease. Clinica Chimica Acta, 456, 107-114.

Lukiw, W.J. (2004). Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochemical Research, 29(6), 1287-1297.

Rushworth, J.V., & Hooper, N.M. (2011). Lipid Rafts: Linking Alzheimer's amyloid-β production, aggregation, and toxicity at neuronal membranes. International Journal of Alzheimer's Disease. 603052. https://doi.org/10.4061/2011/603052

Dietschy, J.M., & Turley, S.D. (2001). Cholesterol metabolism in the brain. Current Opinion in Lipidology, 12(2), 105-112.

Cutler, R.G., Kelly, J., Storie, K., Pedersen, W.A., Tammara, A., Hatanpaa, K., Troncoso, J.C., & Mattson, M.P. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2070-2075.

Huang, Y-N., Lin, C-I., Liao, H., Liu, C-Y., Chen, Y-H., Chiu, W-C., & Lin, S-H. (2016). Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience, 328, 201-209.

Refolo, L.M., Pappolla, M.A., LaFrancois, J., Malester, B., Schmidt, S.D., Thomas-Bryant, T., Tint, G.S., Wang, R, Mercken, M., Petanceska, S.S., & Duff, K.E. (2001). A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 8(5), 890-899.

Suzuki, S., Kiyosue, K., Hazama, S., Ogura, A., Kashihara, M., Hara, T., Koshimizu, H., & Kojima, M. (2007). Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. Journal of Neuroscience, 27(24), 6417-6427.

Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189-198.

Ziegenhorn, A.A., Schulte-Herbrüggen, O., Danker-Hopfe, H., Malbranc, M., Hartung, H.D., Anders, D., Lang, U.E., Steinhagen-Thiessen, E., Schaub, R.T., & Hellweg, R. (2007). Serum neurotrophins-a study on the time course and influencing factors in a large old age sample. Neurobiology of Aging, 28(9), 1436-1445.

Yasutake, C., Kuroda, K., Yanagawa, T., Okamura, T., & Yoneda, H. (2006). Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer's disease and vascular dementia. European Archives of Psychiatry and Clinical Neuroscience, 256(7), 402-406.

Angelucci, F., Spalletta, G., di Iulio, F., Ciaramella, A., Salani, F., Colantoni, L., Varsi, A.E., Gianni, W., Sancesario, G., Caltagirone, C., & Bossù, P. (2010). Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Current Alzheimer Research, 7(1), 15-20. https://doi.org/10.2174/156720510790274473

LaFrance, W.C. Jr., Leaver, K., Stopa, E.G., Papandonatos, G.D., & Blum, A.S. (2010). Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures. Neurology, 75(14), 1285-1291.

Polacchini, A., Metelli, G., Francavilla, R., Baj, G., Florean, M., Mascaretti, L.G., & Tongiorgi, E. (2015). A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays. Scientific Reports, 5, 17989. https://doi.org/10.1038/srep17989

Roy, A., Jana, M., Kundu, A., Corbett, G.T., Rangaswamy, S.B., Mishra, R.K., Luan, C., Gonzalez, F.J., & Pahan, K. (2015). HMG-CoA reductase inhibitors bind to PPARα to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab, 22(2), 253-265.

Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., Gennarelli, M., & Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Research International, 2013, 901082. https://doi.org/10.1155/2013/901082

Downloads

Published

2021-01-13

How to Cite

ศรียาภัย พ. ., สร้อยอัมพรกุล ร. ., คงสาคร น. ., ทวีโชติภัทร์ ม. ., สุขุมศิริชาติ ว. ., & บุษราคัมตระกูล ภ. . (2021). SERUM BRAIN-DERIVED NEUROTROPHIC FACTOR, SERUM LIPIDS AND COGNITION IN THAI PATIENTS WITH ALZHEIMER DISEASE. Srinakharinwirot University Journal of Sciences and Technology, 12(24, July-December), 62–75. Retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/243099